This paper describes the pulse current electrodeposition (PCE) mediated preparation of Ni-W/TiN nanocomposites. Pulse current electrodeposition (PCE) was used to make Ni-W/TiN nanocomposites. The nanoindentation, wear, and corrosion of deposited Ni-W/TiN nanocomposites were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influence of pulse frequency (PF) and duty ratio on the shape, structure, phase structure, wear, and corrosion resistance of Ni-W/TiN nanocomposites was studied. When the duty cycle (DC) was 10%, the results demonstrated that a considerable number of fine grains were present on the deposited Ni-W/TiN nanocomposites, forming smooth, uniform, and fine organization. Increasing DC decreased the content of TiN nanoparticles in Ni-W/TiN nanocomposites. The content of TiN nanoparticles reduced from 11.3 wt % to 7.3 wt % by increasing the DC from 10% to 50%. In contrast, as the PF was increased, the TiN content in Ni-W/TiN nanocomposites increased. When the PF was increased from 50 Hz to 150 Hz, the TiN content increased from 6.4 wt % to 9.6 wt %, respectively. Furthermore, with a PF of 150 Hz and a DC of 10%, the produced Ni-W/TiN nanocomposites had an average hardness of 934.3 HV with ~39.8 µm of an average thickness. The weight loss of the Ni-W/TiN nanocomposites was just 17.2 mg at a PF of 150 Hz, demonstrating the excellent wear resistance potential. Meanwhile, the greatest impedance was found in Ni-W/TiN nanocomposites made with a DC of 10% and a PF of 150 Hz, indicating the best corrosion resistance.