vapor state
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
Vol 29 (1) ◽  
pp. 57-60
Author(s):  
V. F. Bashev ◽  
S. I. Ryabtsev ◽  
F. F. Dotsenko

The method of modernized ion-plasma sputtering produced metastable states, including nanocrystalline and amorphous phases in films, even in alloys whose components do not mixed in the liquid state. The effective rate of energy relaxation at different modes of precipitation is theoretically estimated to be 1012 -1014 K/s during ion-plasma sputtering of atoms. On thermodynamic and kinetic states, different active and passive parameters for amorphization during sputtering are analyzed. The receiving expressions are in good agreement with the experimental results and contribute to the determination of further steps to obtain an amorphous state.


Author(s):  
Claudio Zamitti Mammana

AbstractThis paper presents a method to obtain the variations of the entropies of the phases of a chemical substance in its vapor state, which allows deriving, from thermodynamics, the axioms of a quantum theory that conforms to special relativity.


Author(s):  
Aly M. Abourabia ◽  
Amany Z. Elgarawany

We follow theoretically the motion of the sodium atoms in vapor state under the influence of a laser mode in (1 + 1) D, which is achieved by introducing different optical filters. In the Dirac interaction representation, the equations of motion are represented via the Bloch form together with the Pauli operators to find the elements of the density matrix of the system. The emergence of the principle of coherence in varying the angles of the laser mode permits the evaluation of the average force affecting the atoms' acceleration or deceleration, and hence the corresponding velocities and temperatures are investigated. The atomic vapor is introduced in a region occupied by a heat bath presented by the laser field, such that the state of the atomic vapor is unstable inside the system due to the loss or gain of its kinetic energy to or from the laser field. This instability is studied by finding the eigenvalues of the system's entropy. Resorting to the assumption of Botin, Kazantsev, and Pusep, who issued in the presence of the weak and strong spontaneous emission, a coupling between the mean numbers of photons in terms of time, which allows the evaluation of the rate of entropy production of the system under study. No singularities are found throughout the process of equations solving and other calculations. Resorting to symbolic software, a set of figures illustrating the nonlinear behavior in the dynamics of the problem is present. In this paper, we introduce a theoretical study of the effect of two-counter propagation traveling plane waves on the motion of the sodium atoms in the vapor state by varying the coherence angles to investigate the atomic behavior. Good agreements are found with previous studies.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 273
Author(s):  
Ana Mihaela GAVRILA ◽  
Tanta Verona IORDACHE ◽  
Carmen LAZAU ◽  
Traian ROTARIU ◽  
Ileana CERNICA ◽  
...  

In spite of technological progress, most of the current techniques for 2,4,6-trinitrotoluene (TNT) detection are time consuming due to laborious sensor preparation. Thereby, the aim of this work was to enlarge the knowledge for preparing sensitive elements for TNT with the aid of molecular imprinting; a known technique used to deliver biomimetic materials. The study first depicts the auto-assembly mechanism of (TNT) with functional diamino-silanes (i.e., N-(2-aminoethyl)-3-aminopropyl methyl dimethoxysilane), via “double” Meisenheimer complexes. This mechanism is being described herein for the first time and applied further to obtain molecularly imprinted polymer (MIP) films for TNT recognition. For testing the potential application of films as chemical sensor elements, typical rebinding assays of TNT in a liquid state and the rebinding of TNT in a vapor state, using multilayered sensor chips composed of quartz-chromium (Cr)-gold (Au)-titanium oxide (TiO2), were employed. Batch rebinding experiments have shown that thinner films were more efficient on retaining TNT molecules in the first five min, with a specificity of about 1.90. The quartz-Cr-Au-TiO2-MIP capacitive sensors, tested in vapor state, registered short response times (less than 25 s), low sensitivity to humidity and high specificity for TNT.


Author(s):  
Alexander Yu. Zavrazhnov ◽  
Alexander V. Naumov ◽  
Ekaterina N. Malygina ◽  
Andrew V. Kosyakov

Измерены спектры поглощения пара монохлорида индия, находящегося в состояниях насыщенного и ненасыщенного пара относительно расплава InCl в присутствии расплава металлического индия. Спектры исследованы в интервале длин волн 200 – 400 nm и диапазоне температур 225 – 850 °C. Показано, что в этих условиях пар состоит из молекул InCl и в пределах чувствительности эксперимента не содержит других молекулярных форм хлоридов индия. В ходе нуль-манометрического эксперимента найдена температурная зависимость ln pInCl = = – A/T + b давления насыщенного пара в трехфазном равновесии LIn – LInCl – V, параметры которой составили: A = – 10255 ± 69 К, b = 10,95 ± 0.08 (давление – относительно стандартного 1 atm). Показано, что угловой коэффициент A хорошо согласуется с угловым коэффициентом температурной зависимости коэффициента поглощения ln Tk() = – A/T + B() при различных длинах волн. Это позволяет рассматривать высокотемпературную спектрофотомерию пара как альтернативу прямому манометрическому эксперименту. При сопоставлении манометрических и спектрофотометрических данных определены значения молярного коэффициента экстинкции InCl в ненасыщенном паре для максимумов полос поглощения. Найдено, что этот коэффициент слабо линейно зависит от температуры, убывая или возрастая на разных длинах волн.   ИСТОЧНИК ФИНАНСИРОВАНИЯ Работа выполнена при финансовой поддержке РФФИ, проект 18-33-00900-мол-а.     ЛИТЕРАТУРА Sen D., Heo N., Sef K. Phys. Chem. C, 2012, vol. 116, no. 27, pp. 14445–14453. https://doi.org/10.1021/jp303699u Kitsinelis S., Zissis G., Fokitis E. Physics D: Appl. Phys., 2009, vol. 42, p. 045209 (8 pp). https://doi.org/10.1088/0022-3727/42/4/045209 Hayashi D., Hilbig R., Körber A., et al. Phys. Letters, 2010, vol. 96, p. 061503. https://doi.org/10.1063/1.3318252 Binnewies M., Schmidt M., Schmidt P. Anorg. Allg. Chem., 2017, vol. 643, pp. 1295–1311. https://doi.org/10.1002/zaac.201700055 Zavrazhnov A. Y., Turchen D. N., Naumov A. V., Zlomanov V. P. Phase Equilibria., 2003, vol. 24, no. 4, pp. 330-339. https://doi.org/10.1361/105497103770330316  Fedorov P. I., Akchurin R. Kh. Indium. Moscow, Nauka Publ., 2000, 276 p. (in Russ.) Zavrazhnov A. Yu., Naumov A. V., Pervov V. S., Riazhskikh M. V. Thermochimica Acta, 2012, vol. 532, pp. 96–102. https://doi.org/10.1016/j.tca.2010.10.004 Zavrazhnov A. Yu., Naumov A. V., Sergeeva A. V., Sidei V. I. Inorganic Materials, 2007, vol. 43, no. 11, pp. 1167–1178. https://doi.org/10.1134/s0020168507110039 Zavrazhnov A. Yu, Kosyakov A. V, Sergeeva A. V., Berezin S. S. Condensed Matter and Interphases, vol. 17, no. 4, pp. 417 – 436. URL: https://journals.vsu.ru/kcmf/article/view/87/190 (in Russ.) Brebrick R. F. Phase Equilibria and Diffusion, 2005, vol. 26 no. 1, pp. 20 – 21. https://doi.org/10.1007/s11669-005-0054-z Kuniga Y., Hosaka M. Cryst. Growth, 1975, vol. 28, pp. 385–391. https://doi.org/10.1016/0022-0248(75)90077-9   Froslie H. M., Winans J. G. Rev., 1947, vol. 72, iss. 6, pp. 481–491. https://doi.org/10.1103/physrev.72.481 Jones W. E., McLean T. D. Molecular Spectroscopy, 1991, vol. 150, iss. 1, pp. 195-200. https://doi.org/10.1016/0022-2852(91)90202-l  Vempati S. N., Jones W. E. Molecular Spectroscopy, vol. 132, iss. 2, pp. 458–466. https://doi.org/10.1016/0022-2852(88)90339-6  Kunia Y., Hosada S., Hosuka M. Denki Kagaku – Technical Paper, 1974, vol. 42, pp. 20–25. Robert C. Phys. Acta, 1936, vol. 9, pp. 405–436. Fedorov P. I., Mokhosoyev M. V. Gallium, Indium and Thallium Chemistry. Novosibirsk, Nauka Publ., 1977, 224 p. (in Russ.) Dritz M. E., Budberg P. ., Burkhanov G. S., et al. Properties of the Elements. Handbook, ed. by Dritz M. E. Moscow, Metallurgia Publ., 1985, 672 p. (in Russ.) Bronnikov A. D., Valilevskaya I., Niselson L. A. Izv. AN. SSSR. Metally, 1974, no. 4, pp. 54–57. (in Russ.) Zavrazhnov A. Yu. Doct. chem. sci. Voronezh, 2004, 340 p. Zavrazhnov A. Yu. Russian Journal of Inorganic Chemistry, 2003, vol. 48, no. 10, pp. 1577–1590. (in Russ.) Brebrick R. F., Su C.-H. Phase Equilibria, 2002, vol. 23, 2002, pp. 397–408. https://doi.org/10.1361/105497102770331343  Suvorov A. V. Thermodynamicheskaya chimia paroobraznogo sostoyania [Thermodynamic Chemistry Vapor State]. Leningrad, Chimia Publ., 1970, 208 p. (in Russ.)


2017 ◽  
Vol 5 (9) ◽  
pp. 2311-2317 ◽  
Author(s):  
Di-Ming Chen ◽  
Nan-Nan Zhang ◽  
Chun-Sen Liu ◽  
Miao Du

The template-directed synthesis of a novel luminescent Tb-MOF material which could serve as a multi-responsive probe for sensing Fe3+ and Al3+ ions in water, as well as p-xylene and nitrobenzene in the vapor state is presented here.


2015 ◽  
Vol 25 (4) ◽  
pp. 1023-1029 ◽  
Author(s):  
Yu-Hao Xiao ◽  
Gang Xi ◽  
Xuan-Xuan Zhao ◽  
Shuai Zhou ◽  
Ze-Quan Zhou ◽  
...  

2013 ◽  
Vol 26 (5) ◽  
pp. 377-390 ◽  
Author(s):  
Sh. Sh. Nabiev ◽  
D. B. Stavrovskii ◽  
L. A. Palkina ◽  
V. L. Zbarskii ◽  
N. V. Yudin ◽  
...  
Keyword(s):  

2013 ◽  
Vol 7 (3) ◽  
pp. 203-219 ◽  
Author(s):  
Sh. Sh. Nabiev ◽  
D. B. Stavrovskii ◽  
L. A. Palkina ◽  
V. L. Zbarskii ◽  
N. V. Yudin ◽  
...  
Keyword(s):  

The Analyst ◽  
2010 ◽  
Vol 135 (6) ◽  
pp. 1417 ◽  
Author(s):  
Yoshitaka Takagai ◽  
Yuki Nojiri ◽  
Tsugiko Takase ◽  
Willie L. Hinze ◽  
Michio Butsugan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document