amorphous phases
Recently Published Documents


TOTAL DOCUMENTS

547
(FIVE YEARS 84)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
V D Blank ◽  
B A Kulnitskiy ◽  
Ye V Tatyanin ◽  
O M Zhigalina
Keyword(s):  

Nano Letters ◽  
2021 ◽  
Author(s):  
Alexy P. Freitas ◽  
Raj Kumar Ramamoorthy ◽  
Maxime Durelle ◽  
Eric Larquet ◽  
Isabelle Maurin ◽  
...  
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1381
Author(s):  
Li Zhang ◽  
Chitiphon Chuaicham ◽  
Vellaichamy Balakumar ◽  
Bunsho Ohtani ◽  
Keiko Sasaki

The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol–gel in Mt, named as xFe-Mt/(1 − x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 − x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 − x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 − x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7091
Author(s):  
Arkadiusz Szarek ◽  
Przemysław Postawa ◽  
Tomasz Stachowiak ◽  
Piotr Paszta ◽  
Joanna Redutko ◽  
...  

The influence of dynamic loads resulting from human motor activity and electrocorrosion inside the human body on the strength parameters of artificial joint elements has not yet been investigated. Hip joint arthroplasty is the most common surgical procedure in the world that allows doctors to remove pain and restore motor skills in people with severe hip diseases, after accidents, and in the elderly. Based on the reports, this article assesses changes in the number of implanted endoprostheses in the years 2005–2019 and determines the trends and estimated changes in the number of implanted hip prostheses in the following decades. The study assesses changes in selected strength parameters of UHMW-PE polyethylene inserts of hip joint endoprostheses during their use in the human body. The research was carried out on appropriately collected samples from UHMW-PE cups removed from the human body with a known history and lifetime from 4 to 10 years. Patients’ body weight ranged from 735 [N] to 820 [N], and the declared physical activity was similar in the entire research group. As part of the research, the values of changes in dynamic modules and the mechanical loss coefficient were determined in relation to the share of the crystalline and amorphous phases of artificial UHMW-PE cups, removed from the human body after different periods of exploitation under similar operating conditions. The analysis of selected strength parameters was performed at a temperature of 40 °C, which corresponds to the working conditions inside the human body. On the basis of numerical studies, the influence of changes in material parameters on the deformation of the artificial acetabulum during the patient’s motor activity, which is one of the causes of fatigue destruction, was determined.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6953
Author(s):  
Inés R. Salcedo ◽  
Ana Cuesta ◽  
Shiva Shirani ◽  
Laura León-Reina ◽  
Miguel A. G. Aranda

Cement hydration is a very complex set of processes. The evolution of the crystalline phases during hydration can be accurately followed by X-ray powder diffraction data evaluated by the Rietveld method. However, accurate measurements of some microstructural features, including porosity and amorphous content developments, are more challenging. Here, we combine laboratory X-ray powder diffraction and computed microtomography (μCT) to better understand the results of the μCT analyses. Two pastes with different water–cement ratios, 0.45 and 0.65, filled within capillaries of two sizes, ϕ = 0.5 and 1.0 mm, were analysed at 50 days of hydration. It was shown that within the spatial resolution of the measured μCTs, ~2 μm, the water capillary porosity was segmented within the hydrated component fraction. The unhydrated part could be accurately quantified within 2 vol% error. This work is a first step to accurately determining selected hydration features like the hydration degree of amorphous phases of supplementary cementitious materials within cement blends.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1836
Author(s):  
Edyta Leyk ◽  
Marek Wesolowski

As amorphization may improve the solubility and bioavailability of a drug substance, the aim of this work was to assess to what extent the crystallinity of caffeine (CAF) and theophylline (TF) can be reduced by homogenization with a polymeric excipient. To realize this purpose, the physical mixtures of both methylxanthines with hydroxypropyl methylcellulose (HPMC) were examined using differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Fourier-transform infrared (FTIR) and Raman spectroscopy. Moreover, phase diagrams for the physical mixtures were calculated using theoretical data. Results of DSC experiments suggested that both CAF and TF underwent amorphization, which indicated proportional loss of crystallinity for methylxanthines in the mixtures with HPMC. Additionally, HSM revealed that no other crystalline or amorphous phases were created other than those observed for CAF and TF. FTIR and Raman spectra displayed all the bands characteristic for methylxanthines in mixtures with HPMC, thereby excluding changes in their chemical structures. However, changes to the intensity of the bands created by hydrogen bonds imply the formation of hydrogen bonding in the carbonyl group of methylxanthines and the methyl polymer group. This is consistent with data obtained using principal component analysis. The findings of these studies revealed the quantities of methylxanthines which may be dissolved in the polymer at a given temperature and the composition at which methylxanthines and polymer are sufficiently miscible to form a solid solution.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2042
Author(s):  
Eugen Mircea Anitas

Recent developments in nanotechnology have allowed the fabrication of a new generation of advanced materials with various fractal-like geometries. Fractional Brownian surfaces (fBs) are often used as models to simulate and characterize these complex geometries, such as the surface of particles in dilute particulate systems (e.g., colloids) or the interfaces in non-particulate two-phase systems (e.g., semicrystalline polymers with crystalline and amorphous phases). However, for such systems, a realistic simulation involves parameters averaged over a macroscopic volume. Here, a method based on small-angle scattering technique is proposed to extract the main structural parameters of surfaces/interfaces from experimental data. It involves the analysis of scattering intensities and the corresponding pair distance distribution functions. This allows the extraction of information with respect to the overall size, fractal dimension, Hurst and spectral exponents. The method is applied to several classes of fBs, and it is shown that the obtained numerical values of the structural parameters are in very good agreement with theoretical ones.


2021 ◽  
pp. 111512
Author(s):  
Ni Yang ◽  
Colin Ophus ◽  
Benjamin H. Savitzky ◽  
Mary C. Scott ◽  
Karen Bustillo ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1675
Author(s):  
Edgar F. Rauch ◽  
Patrick Harrison ◽  
Muriel Véron

ACOM/TEM is an automated electron diffraction pattern indexing tool that enables the structure, phase and crystallographic orientation of materials to be routinely determined. The software package, which is part of ACOM/TEM, has substantially evolved over the last fifteen years and has pioneered numerous additional functions with the constant objective of improving its capabilities to make the tremendous amount of information contained in the diffraction patterns easily available to the user. Initially devoted to the analysis of local crystallographic texture, and as an alternative to both X-ray pole figure measurement and EBSD accessories for scanning electron microscopes, it has rapidly proven itself effective to distinguish multiple different phases contained within a given sample, including amorphous phases. Different strategies were developed to bypass the inherent limitations of transmission electron diffraction patterns, such as 180° ambiguities or the complexity of patterns produced from overlapping grains. Post processing algorithms have also been developed to improve the angular resolution and to increase the computing rate. The present paper aims to review some of these facilities. On-going works on 3D reconstruction are also introduced.


2021 ◽  
Vol 29 (1) ◽  
pp. 57-60
Author(s):  
V. F. Bashev ◽  
S. I. Ryabtsev ◽  
F. F. Dotsenko

The method of modernized ion-plasma sputtering produced metastable states, including nanocrystalline and amorphous phases in films, even in alloys whose components do not mixed in the liquid state. The effective rate of energy relaxation at different modes of precipitation is theoretically estimated to be 1012 -1014 K/s during ion-plasma sputtering of atoms. On thermodynamic and kinetic states, different active and passive parameters for amorphization during sputtering are analyzed. The receiving expressions are in good agreement with the experimental results and contribute to the determination of further steps to obtain an amorphous state.


Sign in / Sign up

Export Citation Format

Share Document