multiple elimination
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 39)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 43 (1) ◽  
Author(s):  
Szu-Ying Lai ◽  
Yunung Nina Lin ◽  
Ho-Han Hsu

AbstractSurface Related Multiple Elimination (SRME) usually suffers the issue of either over-attenuation that damages the primaries or under-attenuation that leaves strong residual multiples. This dilemma happens commonly when SRME is combined with least-squares subtraction. Here we introduce a more sophisticated subtraction approach that facilitates better separation of multiples from primaries. Curvelet-domain subtraction transforms both the data and the multiple model into the curvelet domain, where different frequency bands (scales) and event directions (orientations) are represented by a finite number of curvelet coefficients. When combined with adaptive subtraction in the time–space domain, this method can handle model prediction errors to achieve effective subtraction. We demonstrate this method on two 2D surveys from the TAiwan Integrated GEodynamics Research (TAIGER) project. With a careful parameter determination flow, our result shows curvelet-domain subtraction outperforms least-squares subtraction in all geological settings. We also present one failed case where specific geological condition hinders proper multiple subtraction. We further demonstrate that even for data acquired with short cables, curvelet-domain subtraction can still provide better results than least-squares subtraction. We recommend this method as the standard processing flow for multi-channel seismic data.


2021 ◽  
Author(s):  
Othman Abderhman Al Badi ◽  
Majid Mohammed Al Battashi ◽  
Amani Mohammed Al Rubaiey ◽  
Elias Suleiman Al Kharusi

Abstract The presence of interbed multiples is a serious concern in surface seismic processing and interpretation. Its impact is huge especially if they are masking the desirable primary reflections such as the targeted reservoirs area. The conventional demultiple methodologies such as stacking, and deconvolution often fail to suppress all the interbed multiples. Therefore, a need for other measurement is crucial to eliminate the remaining ones (Burton and Lines, 1997). There are several approaches, data-driven or model-driven, currently available to predict the interbed multiples. However, they require an accurate identification of the multiple generators (Lesnikov and Owus, 2011). The identification of the origin of these multiples seems to be the most effective solutions to remove them, however it is not an easy task. The allure of Zero Offset Vertical Seismic Profiles (ZOVSPs) in having the receivers placed close to the subsurface horizons, allow both upgoing and downgoing wavefields to be recordable and separable. It's the combination of short window and long window deconvolution operators which are derived based on our knowledge of downgoing wavefield which help us to determine the multiples generators at their exact depths in the subsurface. This paper demonstrates how Zero offset VSP successfully helped to identify the major multiples generators in one of the exploratory fields in south Oman. These generators then used as an input to demultiple technique named as Extended Interbed Multiple Prediction (XIMP) that eliminates the multiples within surface seismic. As the result of the multiple elimination, the seismic to well tie tremendously improved and the reliability of the overall horizon interpretation is enhanced.


2021 ◽  
Vol 944 (1) ◽  
pp. 012005
Author(s):  
G L Situmeang ◽  
H M Manik ◽  
T B Nainggolan ◽  
Susilohadi

Abstract Wide range frequency bandwidth on seismic data is a necessity due to its close relation to resolution and depth of target. High-frequency seismic waves provide high-resolution imaging that defines thin bed layers in shallow sediment, while low-frequency seismic waves can penetrate into deeper target depth. As a result of broadband seismic technology, its wide range of frequency bandwidth is a suitable geophysical exploration method in the oil and gas industry. A major obstacle that is frequently found in marine seismic data acquisition is the existence of multiples. Short period multiple and reverberation are commonly attenuated by the predictive deconvolution method on prestack data. Advanced methods are needed to suppress long period multiple in marine seismic data. The 2D broadband marine seismic data from deep Morowali Waters, Sulawesi, contains both short and long period multiples. The predictive deconvolution, which is applied to the processing sequences, successfully eliminates short period multiple on prestack data. The combination of F-k filter and Surface Related Multiple Elimination (SRME) methods are successful in attenuating long period multiple of the 2D broadband marine seismic data. The Prestack Time Migration section shows fine resolution of seismic images.


2021 ◽  
Vol 13 (18) ◽  
pp. 3683
Author(s):  
David Vargas ◽  
Ivan Vasconcelos ◽  
Matteo Ravasi ◽  
Nick Luiken

Multidimensional deconvolution constitutes an essential operation in a variety of geophysical scenarios at different scales ranging from reservoir to crustal, as it appears in applications such as surface multiple elimination, target-oriented redatuming, and interferometric body-wave retrieval just to name a few. Depending on the use case, active, microseismic, or teleseismic signals are used to reconstruct the broadband response that would have been recorded between two observation points as if one were a virtual source. Reconstructing such a response relies on the the solution of an ill-conditioned linear inverse problem sensitive to noise and artifacts due to incomplete acquisition, limited sources, and band-limited data. Typically, this inversion is performed in the Fourier domain where the inverse problem is solved per frequency via direct or iterative solvers. While this inversion is in theory meant to remove spurious events from cross-correlation gathers and to correct amplitudes, difficulties arise in the estimation of optimal regularization parameters, which are worsened by the fact they must be estimated at each frequency independently. Here we show the benefits of formulating the problem in the time domain and introduce a number of physical constraints that naturally drive the inversion towards a reduced set of stable, meaningful solutions. By exploiting reciprocity, time causality, and frequency-wavenumber locality a set of preconditioners are included at minimal additional cost as a way to alleviate the dependency on an optimal damping parameter to stabilize the inversion. With an interferometric redatuming example, we demonstrate how our time domain implementation successfully reconstructs the overburden-free reflection response beneath a complex salt body from noise-contaminated up- and down-going transmission responses at the target level.


2021 ◽  
Vol 18 (4) ◽  
pp. 492-502
Author(s):  
Dongliang Zhang ◽  
Constantinos Tsingas ◽  
Ahmed A Ghamdi ◽  
Mingzhong Huang ◽  
Woodon Jeong ◽  
...  

Abstract In the last decade, a significant shift in the marine seismic acquisition business has been made where ocean bottom nodes gained a substantial market share from streamer cable configurations. Ocean bottom node acquisition (OBN) can acquire wide azimuth seismic data over geographical areas with challenging deep and shallow bathymetries and complex subsurface regimes. When the water bottom is rugose and has significant elevation differences, OBN data processing faces a number of challenges, such as denoising of the vertical geophone, accurate wavefield separation, redatuming the sparse receiver nodes from ocean bottom to sea level and multiple attenuation. In this work, we review a number of challenges using real OBN data illustrations. We demonstrate corresponding solutions using processing workflows comprising denoising the vertical geophones by using all four recorded nodal components, cross-ghosting the data or using direct wave to design calibration filters for up- and down-going wavefield separation, performing one-dimensional reversible redatuming for stacking QC and multiple prediction, and designing cascaded model and data-driven multiple elimination applications. The optimum combination of the mentioned technologies produced cleaner and high-resolution migration images mitigating the risk of false interpretations.


Geophysics ◽  
2021 ◽  
pp. 1-70
Author(s):  
Rodrigo S. Santos ◽  
Daniel E. Revelo ◽  
Reynam C. Pestana ◽  
Victor Koehne ◽  
Diego F. Barrera ◽  
...  

Seismic images produced by migration of seismic data related to complex geologies, suchas pre-salt environments, are often contaminated by artifacts due to the presence of multipleinternal reflections. These reflections are created when the seismic wave is reflected morethan once in a source-receiver path and can be interpreted as the main coherent noise inseismic data. Several schemes have been developed to predict and subtract internal multiplereflections from measured data, such as the Marchenko multiple elimination (MME) scheme,which eliminates the referred events without requiring a subsurface model or an adaptivesubtraction approach. The MME scheme is data-driven, can remove or attenuate mostof these internal multiples, and was originally based on the Neumann series solution ofMarchenko’s projected equations. However, the Neumann series approximate solution isconditioned to a convergence criterion. In this work, we propose to formulate the MMEas a least-squares problem (LSMME) in such a way that it can provide an alternative thatavoids a convergence condition as required in the Neumann series approach. To demonstratethe LSMME scheme performance, we apply it to 2D numerical examples and compare theresults with those obtained by the conventional MME scheme. Additionally, we evaluatethe successful application of our method through the generation of in-depth seismic images,by applying the reverse-time migration (RTM) algorithm on the original data set and tothose obtained through MME and LSMME schemes. From the RTM results, we show thatthe application of both schemes on seismic data allows the construction of seismic imageswithout artifacts related to internal multiple events.


Geophysics ◽  
2021 ◽  
pp. 1-47
Author(s):  
Xueyi Jia ◽  
Anatoly Baumstein ◽  
Charlie Jing ◽  
Erik Neumann ◽  
Roel Snieder

Sub-basalt imaging for hydrocarbon exploration faces challenges with the presence of multiple scattering, attenuation and mode-conversion as seismic waves encounter highly heterogeneous and rugose basalt layers. A combination of modern seismic acquisition that can record densely-sampled data, and advanced imaging techniques make imaging through basalt feasible. Yet, the internal multiples, if not properly handled during seismic processing, can be mapped to reservoir layers by conventional imaging methods, misguiding geological interpretation. Traditional internal multiple elimination methods suffer from the requirement of picking horizons of multiple generators and/or a top-down adaptive subtraction process. Marchenko imaging provides an alternative solution to directly remove the artifacts due to internal multiples, without the need of horizon picking or subtraction. In this paper, we present a successful application of direct Marchenko imaging for sub-basalt de-multiple and imaging with an offshore Brazil field dataset. The internal multiples in this example are generated from the seabed and basalt layers, causing severe artifacts in conventional seismic images. We demonstrate that these artifacts are largely suppressed with Marchenko imaging and propose a general work flow for data pre-processing and regularization of marine streamer datasets. We show that horizontally propagating waves can also be reconstructed by the Marchenko method at far offsets.


Geophysics ◽  
2021 ◽  
pp. 1-103
Author(s):  
Kees Wapenaar ◽  
Joeri Brackenhoff ◽  
Marcin Dukalski ◽  
Giovanni Meles ◽  
Chris Reinicke ◽  
...  

With the Marchenko method it is possible to retrieve Green's functions between virtual sources in the subsurface and receivers at the surface from reflection data at the surface and focusing functions. A macro model of the subsurface is needed to estimate the first arrival; the internal multiples are retrieved entirely from the reflection data. The retrieved Green's functions form the input for redatuming by multidimensional deconvolution (MDD). The redatumed reflection response is free of internal multiples related to the overburden. Alternatively, the redatumed response can be obtained by applying a second focusing function to the retrieved Green's functions. This process is called Marchenko redatuming by double focusing. It is more stable and better suited for an adaptive implementation than Marchenko redatuming by MDD, but it does not eliminate the multiples between the target and the overburden. An attractive efficient alternative is plane-wave Marchenko redatuming, which retrieves the responses to a limited number of plane-wave sources at the redatuming level. In all cases, an image of the subsurface can be obtained from the redatumed data, free of artefacts caused by internal multiples. Another class of Marchenko methods aims at eliminating the internal multiples from the reflection data, while keeping the sources and receivers at the surface. A specific characteristic of this form of multiple elimination is that it predicts and subtracts all orders of internal multiples with the correct amplitude, without needing a macro subsurface model. Like Marchenko redatuming, Marchenko multiple elimination can be implemented as an MDD process, a double dereverberation process, or an efficient plane-wave oriented process. We systematically discuss the different approaches to Marchenko redatuming, imaging and multiple elimination, using a common mathematical framework.


2021 ◽  
Vol 13 (1) ◽  
pp. 127-139
Author(s):  
Hanita Nur Fitria ◽  
Henry Manik

Metode seismik refleksi digunakan dalam eksplorasi minyak dan gas di laut dengan memanfaatkan gelombang suara yang menjalar ke dalam batuan dasar bumi. Penelitian ini menggunakan data seismik 2D laut berupa data lapangan hasil akuisisi di Perairan Seram, Papua Barat. Data lapangan hasil akuisisi masih bercampur dengan multiple yang disebabkan oleh perbedaan impedansi akustik dari lapisan-lapisan bawah permukaan bumi. Keberadaan multiple dapat menyebabkan kerumitan pada saat interpretasi karena menimbulkan efek reflektor semu. Oleh karena itu perlu diterapkan metode atenuasi multiple yang tepat, untuk mengurangi derau multiple. Penelitian ini menerapkan kombinasi antara Surface Related Multiple Elimination (SRME) dan Transformasi Radon untuk menghasilkan penampang seismik yang bebas dari multiple. Hasil dari pengolahan data menunjukkan bahwa kombinasi metode Surface Related Multiple Elimination dan Transformasi Radon efektif untuk menghilangkan multiple periode panjang pada zona near offset, middle offset dan far offset. Penerapan kombinasi metode ini juga menghapus beberapa bagian yang tidak signifikan pada reflektor utama oleh karena bercampurnya sinyal dan multiple dalam domain moveout yang sama.


Sign in / Sign up

Export Citation Format

Share Document