This paper presents a novel method for atmospheric transmittance-temperature-emissivity separation (AT2ES) using online midwave infrared hyperspectral images. Conventionally, temperature and emissivity separation (TES) is a well-known problem in the remote sensing domain. However, previous approaches use the atmospheric correction process before TES using MODTRAN in the long wave infrared band. Simultaneous online atmospheric transmittance-temperature-emissivity separation starts with approximation of the radiative transfer equation in the upper midwave infrared band. The highest atmospheric band is used to estimate surface temperature, assuming high emissive materials. The lowest atmospheric band (CO2 absorption band) is used to estimate air temperature. Through onsite hyperspectral data regression, atmospheric transmittance is obtained from the y-intercept, and emissivity is separated using the observed radiance, the separated object temperature, the air temperature, and atmospheric transmittance. The advantage with the proposed method is from being the first attempt at simultaneous AT2ES and online separation without any prior knowledge and pre-processing. Midwave Fourier transform infrared (FTIR)-based outdoor experimental results validate the feasibility of the proposed AT2ES method.