soil microbiota
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 127)

H-INDEX

26
(FIVE YEARS 7)

Symbiosis ◽  
2022 ◽  
Author(s):  
Tancredo Souza ◽  
Izabelle Cristine Barros ◽  
Lucas Jónatan Rodrigues da Silva ◽  
Lídia Klestadt Laurindo ◽  
Gislaine dos Santos Nascimento ◽  
...  

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Antonio Camacho ◽  
César Mora ◽  
Antonio Picazo ◽  
Carlos Rochera ◽  
Alba Camacho-Santamans ◽  
...  

Physical and chemical alterations may affect the microbiota of soils as much as the specific presence of toxic pollutants. The relationship between the microbial diversity patterns and the soil quality in a Mediterranean context is studied here to test the hypothesis that soil microbiota is strongly affected by the level of anthropogenic soil alteration. Our aim has been to determine the potential effect of organic matter loss and associated changes in soil microbiota of poorly evolved Mediterranean soils (Leptosols and Regosols) suffering anthropogenic stress (i.e., cropping and deforestation). The studied soils correspond to nine different sites which differed in some features, such as the parent material, vegetation cover, or soil use and types. A methodological approach has been used that combines the classical physical and chemical study of soils with molecular characterization of the microbial assemblages using specific primers for Bacteria, Archaea and ectomycorrhizal Fungi. In agreement with previous studies within the region, physical, chemical and biological characteristics of soils varied notably depending on these factors. Microbial biomass, soil organic matter, and moisture, decreased in soils as deforestation increased, even in those partially degraded to substitution shrubland. Major differences were observed in the microbial community structure between the mollic and rendzic Leptosols found in forest soils, and the skeletic and dolomitic Leptosols in substitute shrublands, as well as with the skeletic and dolomitic Leptosols and calcaric Regosols in dry croplands. Forest soils displayed a higher microbial richness (OTU’s number) and biomass, as well as more stable and connected ecological networks. Here, we point out how human activities such as agriculture and other effects of deforestation led to changes in soil properties, thus affecting its quality driving changes in their microbial diversity and biomass patterns. Our findings demonstrate the potential risk that the replacement of forest areas may have in the conservation of the soil’s microbiota pool, both active and passive, which are basic for the maintenance of biogeochemical processes.


2022 ◽  
Vol 169 ◽  
pp. 104246
Author(s):  
Sirine Bouguerra ◽  
Ana Gavina ◽  
Tiago Natal-da-Luz ◽  
José Paulo Sousa ◽  
Mohamed Ksibi ◽  
...  

2021 ◽  
Author(s):  
Tobias Guldberg Frøslev ◽  
Rasmus Ejrnæs ◽  
Anders Johannes Hansen ◽  
Hans Henrik Bruun ◽  
Ida Broman Nielsen ◽  
...  

Biodiversity of soil microbiota is routinely assessed with environmental DNA-based methods, among which amplification and massive parallel sequencing of marker genes (eDNA metabarcoding) is the most common. Soil microbiota may for example be investigated in relation to biodiversity research or as a tool in forensic investigations. After sampling, the taxonomic composition of soil biotic communities may change. In order to minimize community changes after sampling, it is desirable to reduce biological activity, e.g. by freezing immediately after sampling. However, this may be impossible due to remoteness of study sites or, in forensic cases, where soil has been attached to a questioned item for protracted periods of time. Here we investigated the effect of storage duration and conditions on the assessment of the soil biota with eDNA metabarcoding. We extracted eDNA from freshly collected soil samples and again from the same samples after storage under contrasting temperature conditions. We used five different primer sets targeting bacteria, fungi, protists (cercozoans), general eukaryotes, and plants. For these groups, we quantified differences in richness, evenness and community composition. Subsequently, we tested whether we could correctly infer habitat type and original sample identity after storage using a large reference dataset. We found increased community composition differences with extended storage time and with higher storage temperature. However, for samples stored less than 28 days at a maximum of 20 C, changes were generally insignificant. Classification models could successfully assign most stored samples to their exact location of origin and correct habitat type even after weeks of storage. Even samples showing larger compositional changes generally retained the original sample as the best match (relative similarity). Our results show that for most biodiversity and forensic applications, storage of samples for days and even several weeks may not be a problem, if storage temperature does not exceed 20 C. Even after suboptimal storage conditions, significant patterns can be reproduced.


2021 ◽  
Vol 48 (10) ◽  
pp. 1761-1770
Author(s):  
Y. V. Pleshakova ◽  
N. A. Zelenova ◽  
C. T. Ngun ◽  
M. V. Reshetnikov

2021 ◽  
Vol 12 ◽  
Author(s):  
Bulbul Ahmed ◽  
Lawrence B. Smart ◽  
Mohamed Hijri

Hemp (Cannabis sativa L.) is a crop bred and grown for the production of fiber, grain, and floral extracts that contribute to health and wellness. Hemp plants interact with a myriad of microbiota inhabiting the phyllosphere, endosphere, rhizoplane, and rhizosphere. These microbes offer many ecological services, particularly those of below ground biotopes which are involved in nutrient cycling, uptake, and alleviating biotic and abiotic stress. The microbiota communities of the hemp rhizosphere in the field are not well documented. To discover core microbiota associated with field grown hemp, we cultivated single C. sativa cultivar, “TJ’s CBD,” in six different fields in New York and sampled hemp roots and their rhizospheric soil. We used Illumina MiSeq amplicon sequencing targeting 16S ribosomal DNA of bacteria and ITS of fungi to study microbial community structure of hemp roots and rhizospheres. We found that Planctobacteria and Ascomycota dominated the taxonomic composition of hemp associated microbial community. We identified potential core microbiota in each community (bacteria: eight bacterial amplicon sequence variant – ASV, identified as Gimesia maris, Pirellula sp. Lacipirellula limnantheis, Gemmata sp. and unclassified Planctobacteria; fungi: three ASVs identified as Fusarium oxysporum, Gibellulopsis piscis, and Mortierella minutissima). We found 14 ASVs as hub taxa [eight bacterial ASVs (BASV) in the root, and four bacterial and two fungal ASVs in the rhizosphere soil], and 10 BASV connected the root and rhizosphere soil microbiota to form an extended microbial communication in hemp. The only hub taxa detected in both the root and rhizosphere soil microbiota was ASV37 (Caulifigura coniformis), a bacterial taxon. The core microbiota and Network hub taxa can be studied further for biocontrol activities and functional investigations in the formulation of hemp bioinoculants. This study documented the microbial diversity and community structure of hemp grown in six fields, which could contribute toward the development of bioinoculants for hemp that could be used in organic farming.


2021 ◽  
Author(s):  
Valéria Custódio ◽  
Mathieu Gonin ◽  
Georg Stabl ◽  
Niokhor Bakhoum ◽  
M. Margarida Oliveira ◽  
...  
Keyword(s):  

Author(s):  
Andrés E. Marcoleta ◽  
Patricio Arros ◽  
Macarena A. Varas ◽  
José Costa ◽  
Johanna Rojas-Salgado ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2199
Author(s):  
Kelly Ulcuango ◽  
Mariela Navas ◽  
Nelly Centurión ◽  
Miguel Á. Ibañez ◽  
Chiquinquirá Hontoria ◽  
...  

Cover crops (CC) provide important ecosystem services that are demanded to achieve more sustainable agrosystems. However, the legacy effects of CC on the microbial community structure and its interactions with the subsequent cash crops (CaC) are still poorly understood, especially when CC mixtures are involved. In this work, five CC (3 monocultures and 2 mixtures) were selected in an experiment under semi-controlled conditions to investigate if CC monocultures and mixtures differed in their effects on soil and crop variables and if the identity of the subsequent crop modulates these effects. The two most consumed crops worldwide, wheat and maize, were sown separately after CC. The legacy effects of CC on the studied microbial variables largely depended on the interaction with the CaC. The vetch and the barley-vetch mixture stood out by providing the microbial conditions that enhanced the absorption of macro- and micronutrients, to finally seek the highest wheat biomass (>80% more than the control). In maize, the effects of CC on soil microbiota were more limited. The soil microbial responses for CC mixtures were complex and contrasting. In wheat, the barley-vetch mixture behaved like barley monoculture, whereas in maize, this mixture behaved like vetch monoculture. In both CaC, the barley-melilotus mixture differed completely from its monocultures, mainly through changes in archaea, Glomeromycota, and F:B ratio. Therefore, it is necessary to deepen the knowledge on the CC-CaC-microbial interactions to select the CC that most enhance the sustainability and yield of each agrosystem.


Sign in / Sign up

Export Citation Format

Share Document