charcot marie tooth
Recently Published Documents


TOTAL DOCUMENTS

3379
(FIVE YEARS 651)

H-INDEX

98
(FIVE YEARS 10)

2022 ◽  
pp. 107110072110646
Author(s):  
Tonya An ◽  
Edward Haupt ◽  
Max Michalski ◽  
Jari Salo ◽  
Glenn Pfeffer

Background: The cavovarus deformity of Charcot-Marie-Tooth (CMT) disease is often characterized by a paradoxical relationship of hindfoot varus and forefoot valgus. The configuration of the midfoot, which links these deformities, is poorly understood. Accurate assessment of 3-dimensional alignment under physiologic loadbearing conditions is possible using weightbearing computed tomography (WBCT). This is the first study to examine the rotational deformity in the midfoot of CMT patients and, thus, provide key insights to successful correction of CMT cavovarus foot. Methods: A total of 27 WBCT scans from 21 CMT patients were compared to control WBCTs from 20 healthy unmatched adults. CMT patients with a history of bony surgery, severe degenerative joint disease, or open physes in the foot were excluded. Scans were analyzed using 3-dimensional software. Anatomic alignment of the tarsal bones was calculated relative to the anterior-posterior axis of the tibial plafond in the axial plane, and weightbearing surface in the coronal plane. Results: Maximal rotational deformity in CMT patients occurred at the transverse tarsal joints, averaging 61 degrees of external rotation (supination), compared to 34 degrees among controls ( P < .01). The talonavicular joint was also the site of peak adduction deformity in the midfoot, with an average talonavicular coverage angle measuring 12 degrees compared with −11 degrees in controls ( P < .01). Conclusion: This 3-dimensional WBCT analysis is the first to isolate and quantify the multiplanar rotational deformity in the midfoot of CMT patients. Compared with healthy unmatched control cases, CMT patients demonstrated increased axial plane adduction and coronal plane rotation at the talonavicular (TN) joint. These findings support performing soft tissue release at the TN joint to abduct and derotate the midfoot as a first step for targeted deformity correction. Level of Evidence: Level III, retrospective case-control study.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Laura R. Rodríguez ◽  
Tamara Lapeña-Luzón ◽  
Noelia Benetó ◽  
Vicent Beltran-Beltran ◽  
Federico V. Pallardó ◽  
...  

Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum–mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich’s ataxia, and Charcot–Marie–Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.


Author(s):  
Takaki Taniguchi ◽  
Masahiro Ando ◽  
Yuji Okamoto ◽  
Akiko Yoshimura ◽  
Yujiro Higuchi ◽  
...  

BMC Neurology ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Haitian Nan ◽  
Yunqing Wu ◽  
Shilei Cui ◽  
Houliang Sun ◽  
Jiawei Wang ◽  
...  

Abstract Background Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. Case presentation We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband’s father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. Conclusion This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.


2022 ◽  
Vol 8 (1) ◽  
pp. 68-71
Author(s):  
Richard Suherlim ◽  
Anak Agung Ayu Putri Laksmidewi ◽  
Sudiarini NKA

Charcot-Marie-Tooth (CMT) or Hereditary Motor and Sensory Neuropathy (HMSN) is the most common hereditary peripheral nerve disease with progressive chronic weakness, muscle atrophy, and sensory disturbances. There are several types and subtypes of CMT with their respective clinical manifestations. In this article, we reported a patient with of CMT type X. A 43-year-old male patient was referred to a neurology clinic with weakness in both limbs for 2 years, accompanied by tingling and sensory disturbance in both hands and feet. There are several of his family members who had similar complaints. Lumbosacral magnetic resonance imaging (MRI) examination revealed mild nucleus pulposus herniation. Electroneuromyography (ENMG) examination revealed demyelinating sensory motor polyneuropathy. Histopathological examination of nerve biopsy showed demyelination of the sural nerve. It is hard to make a diagnosis of CMT, because it requires high suspicion from clinicians once encounter a suspected case and also need to supported by sophisticated equipment such as electrophysiological examinations, nerve biopsy examinations, and genetic examinations. It is vital for clinicians for being able to diagnose CMT correctly and provide treatment as soon as possible in order to maintain the patients’ quality of life.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yafeng Li ◽  
Tomas S. Aleman ◽  
Colin C. Quinn ◽  
Tian Xia ◽  
Charles G. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document