genomic distribution
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 33)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Lea Pradier ◽  
Stephanie Bedhomme

Antibiotics consumption and its abuses have been historically and repeatedly pointed out as the major driver of antibiotic resistance emergence and propagation. However, several examples show that resistance may persist despite substantial reductions in antibiotic use, and that other factors are at stake. Here we study the temporal, spatial, and ecological distribution patterns of aminoglycoside resistance, by screening more than 160,000 publicly available genomes for 27 clusters of genes encoding aminoglycoside-modifying enzymes (AMEGs). We find that AMEGs are ubiquitous: about 25% of sequenced bacteria carry AMEGs. These bacteria were sequenced from all the continents and terrestrial biomes, and belong to a wide number of phyla. By focusing on several European countries between 1997 and 2018, we show that aminoglycoside consumption has little impact on the prevalence of AMEG-carrying bacteria, whereas most variation in prevalence is observed among biomes. We further analyze the resemblance of resistome compositions across biomes: soil, wildlife, and human samples appear to be central to understand the exchanges of AMEGs between different ecological contexts. Moreover, the genomic distribution of AMEGs suggests a selection for widening resistance spectra, mostly driven by mobile genetic elements. Together, these results support the idea that interventional strategies based on reducing antibiotic use should be complemented by a stronger control of exchanges, especially between ecosystems.


2022 ◽  
pp. gr.275655.121
Author(s):  
Ni-Chen Chang ◽  
Quirze Rovira ◽  
Jonathan N Wells ◽  
Cedric Feschotte ◽  
Juan M Vaquerizas

There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos, and by the relative scarcity of active TEs in these organisms. Zebrafish is an outstanding model for the study of vertebrate development and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2,000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whilst short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. While two thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched amongst transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.


Fishes ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Jiaying Lian ◽  
Liyuan Lv ◽  
Hanhan Yao ◽  
Zhihua Lin ◽  
Yinghui Dong

The Chinese razor clam (Sinonovacula constricta), a bivalve species widely distributed in estuaries and mudflats, is often exposed to extreme environmental and microbial stresses. Histones are fundamental components of chromatin and play an important role in innate immunity, as demonstrated by its antimicrobial activities in clams. However, little attention has been paid to histones in bivalves. To fill this gap, we investigated the genomic distribution, structural characteristics, conserved motifs, and phylogenetic relationships of histones in S. constricta. A total of 114 histone genes were detected in the S. constricta genome, which were divided into 25 types in phylogenetic analysis. Among them, partial histones exhibited a tissue-dependent expression pattern, indicating that they may be involved in sustaining the homeostasis of organs/tissues in adult S. constricta. Furthermore, mRNA expression of certain histones changed significantly in S. constricta when infected with Vibrio parahaemolyticus, suggesting that histones play a role in the immune defense of S. constricta. All together, this study on histone genes in S. constricta not only greatly expands our knowledge of histone function in the clam, but also histone evolution in molluscs.


2021 ◽  
Author(s):  
Wei Lv ◽  
Xiaoguang Pan ◽  
Peng Han ◽  
Ziyu Wang ◽  
Hao Yuan ◽  
...  

AbstractCell free extrachromosomal circular DNA (eccDNA) is evolving as a potential biomarker in liquid biopsies for disease diagnosis. In this study, an optimized next generation sequencing-based Circle-Seq method was developed to investigate urinary cell free eccDNA (ucf-eccDNA) from 28 adult healthy volunteers (mean age = 28, 19 males/ 9 females). The genomic distributions and sequence compositions of ucf-eccDNAs were comprehensively characterized. Approximately 1.2 million unique ucf-eccDNAs are identified, covering 14.9% of the human genome. Comprehensive characterization of ucf-eccDNAs show that ucf-eccDNAs contain higher GC content than flanking genomic regions. Most eccDNAs are less than 1000 bp and present four pronounced peaks at 203, 361, 550 and 728 bp, indicating the association between eccDNAs and the numbers of intact nucleosomes. Analysis of genomic distribution of ucf-eccDNAs show that eccDNAs are found in all chromosomes but enriched in chromosomes i.e. chr.17, 19 and 20 with high density of protein-codding genes, CpG islands, SINE and simple repeat elements. Lastly, analysis of sequence motif signatures at eccDNA junction sites reveal that direct repeats (DRs) are commonly found, indicating a potential role of DRs in eccDNA biogenesis. This work underscores the deep sequencing analysis of ucf-eccDNAs and provides a valuable reference resource for exploring potential applications of ucf-eccDNA as diagnostic biomarkers of urogenital disorders in the future.Significance StatementExtrachromosomal circular DNA (eccDNA) is an important genetic element and a biomarker for disease diagnosis and treatment. In this study, we conduct a comprehensive characterization of urinary cell free eccDNA (ucf-eccDNA) in 28 heathy subjects. Over one million ucf-eccDNAs are identified. Ucf-eccDNAs are characterized as high GC content. The size of most ucf-eccDNAs is less than 1000 bp and enriched in four peaks resembling the size of single, double, triple, and quadruple nucleosomes. The genomic distribution of ucf-eccDNAs is enriched in generic regions, protein-coding genes, Alu, CpG islands, SINE and simple repeats. Sequence motif analysis of ucf-eccDNA junctions identified simple direct repeats (DRs) commonly presented in most eccDNAs, suggesting potential roles of DRs in eccDNA biogenesis.


2021 ◽  
Author(s):  
Ksenia Skvortsova ◽  
Stephanie Bertrand ◽  
Danila Voronov ◽  
Paul Edward Duckett ◽  
Samuel E Ross ◽  
...  

DNA methylation (5-methylcytosine; 5mC) is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the coordinated action of DNA methyltransferases, which deposit 5mC, and TET enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers, however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in non-vertebrate lineages is lacking. By employing base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of non-vertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes employ TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work thus demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of unexpected deep conservation of a major gene-regulatory module.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2217-2217
Author(s):  
Yali Ding ◽  
Bing He ◽  
Jonathon Payne ◽  
Dhimant Desai ◽  
Arati Sharma ◽  
...  

Abstract Ikzf1 encodes a zinc finger, DNA-binding protein that functions as a tumor suppressor in acute lymphoblastic leukemia (ALL). Deletion and/or loss of Ikaros function results in the development of high-risk leukemia. In the nucleus, Ikaros forms complexes with histone deacetylase complex, NuRD, and it participates in the formation of heterochromatin. The role of Ikaros-mediated formation of heterochromatin in tumor suppression in leukemia is unknown. We determined global genomic occupancy of Ikaros, global heterochromatin distribution, chromatin accessibility, DNA methylation landscape, and gene expression in primary human T-cell ALL (T-ALL), as well as in mouse T-ALL to analyze how Ikaros regulates heterochromatin landscape and gene expression in T-ALL. Results showed that Ikaros DNA occupancy is essential for the recruitment of histone deacetylase 1 (HDAC1), Polycomb repressive complex 2 (PRC2) and formation of facultative heterochromatin, as well as the formation of constitutive heterochromatin (characterized by H3K9me3 occupancy). T-ALL cells with deletion of both Ikzf1 alleles have severely impaired HDAC1 DNA occupancy and reduced H3K27me3. Re-introduction of Ikzf1 via retroviral transduction resulted in the restoration of H3K27me3 facultative heterochromatin, along with HDAC1 DNA occupancy. The H3K27me3 genomic distribution following Ikzf1 re-introduction showed high homology to the H3K27me3 genomic distribution in normal thymocytes. Analysis of H3K9me3 genomic distribution showed that Ikzf1 deletion results in dramatic redistribution of H3K9me3 global occupancy, with reduced H3K9me3 occupancy at pericentromeric loci. Reintroduction of Ikzf1 enhances H3K9me3 enrichment in pericentromeric loci, as well as at the promoters of genes that are involves in cellular proliferation. Analysis of DNA methylation distribution showed that Ikzf1 expression regulates global DNA methylation landscape. The presence of facultative heterochromatin, with enrichment of H3K27me3, inversely correlated with DNA methylation. Global analysis of chromatin accessibility revealed that Ikaros binding resulted in the loss of chromatin accessibility at over 3400 previously-accessible chromatin sites. Dynamic analyses demonstrate the long-lasting effects of Ikaros's DNA binding on heterochromatin distribution and chromatin accessibility. Analysis of gene expression in T-ALL with both Ikzf1 alleles and in Ikzf1-defficient cells (from Ikzf1-defficient T-ALL, and from Ikzf1-wild-type T-ALL following Ikzf1 deletion by CRISPR) showed that Ikaros-induced redistribution of facultative and constitutive heterochromatin results in the repression of several genes that are critical for cell cycle progression, PI3K-AKT-mTOR, and WNT signaling pathway. In conclusion, results suggest that Ikaros' tumor suppressor function in T-ALL occurs via global regulation of the heterochromatin, DNA methylation landscape, and chromatin accessibility, as well as via epigenetic regulation of transcription of the genes that play essential roles in signaling pathways that promote cellular proliferation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
T. Sabeetha C. S. Sripriya ◽  
K. Sudha S. Arockia Doss

By 2019 December saw a deadly virus starting to spread across wuhan city in china and started to spread across the globe by 2020 and was named as SARS-CoV-2. The Covid-19 variant spreading in India, namely the Delta variant is found to be more contagious and has been classified as ‘being of concern’ by the World Health Organization. RTPCR positive samples from a tertiary care hospital were subjected to sequencing after fulfilling the criteria as per the standard protocol. Out of 70 samples sequenced, B.1.617.2, AY.4, AY.6, AY.12 & Delta like variants were detected. The Delta variant B.1.617.2 was found to be the predominant strain. The sub lineage of Delta variant strain like AY.6 (1.4%), AY.4 (12 %), AY.12 (14%) were also detected. Delta –like variant was found in 20% of the samples sequenced. The results of sequencing might help to understand the characteristics of the strains prevalent during second wave of SARS-CoV-2 and would be helpful to tackle further infection of COVID.


Author(s):  
Reid Wagner ◽  
Benjamin S. Toups ◽  
Zhifeng Deng ◽  
Kyle A. Gallivan ◽  
Jeremy M. Brown ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 109460
Author(s):  
Mengqing Gao ◽  
Jin Wang ◽  
Sophie Rousseaux ◽  
Minjia Tan ◽  
Lulu Pan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document