regulatory module
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 135)

H-INDEX

40
(FIVE YEARS 9)

2021 ◽  
Author(s):  
Dongzhi Lin ◽  
Licheng Kang ◽  
Wenhao Zhou ◽  
Yulu Wang ◽  
Yu Chen ◽  
...  

Abstract Transcriptionally active chromosome (TAC) is a component of protein-DNA complexes with RNA polymerase activity found in chloroplasts. Although TAC in Arabidopsis thaliana has been extensively investigated, how the rice (Oryza sativa L.) TAC complex functions remains largely unknown. We report the characterization of the mutant thermosensitive chlorophyll-deficient7 (tcd7) and the cloning of TCD7. tcd7 mutant seedlings displayed an albino phenotype specifically at low temperatures and before the four-leaf stage. We identified TCD7 by map-based cloning followed by transgenic rescue and genome editing tests, showing that TCD7 encodes the putative TAC component FRUCTOKINASE-LIKE 2 (OsFLN2). TCD7 transcripts were highly abundant in green tissues, and the protein localized to chloroplasts. In agreement with the albino phenotype, transcript levels of genes controlling chloroplast development and the establishment of photosynthetic capacity were severely reduced in tcd7 seedlings at low temperatures, but were expressed as in the wild type at high temperatures, implying that TCD7 regulates the PEP pathway and chloroplast development. Moreover, TCD7 interacted with the thioredoxin OsTRXz to form an OsTRXz-TCD7 regulatory module, which might regulate plastid transcription under cold stress. Our results demonstrate that the nucleus-encoded TAC protein TCD7 protects chloroplast development from cold stress via a TRXz-FLN regulatory module.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Asad Hussain Shah ◽  
Denghui Li ◽  
He Li ◽  
...  

Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binghui Shan ◽  
Wei Wang ◽  
Jinfeng Cao ◽  
Siqi Xia ◽  
Ruihua Li ◽  
...  

REVEILLE (RVE) genes generally act as core circadian oscillators to regulate multiple developmental events and stress responses in plants. It is of importance to document their roles in crops for utilizing them to improve agronomic traits. Soybean is one of the most important crops worldwide. However, the knowledge regarding the functional roles of RVEs is extremely limited in soybean. In this study, the soybean gene GmMYB133 was shown to be homologous to the RVE8 clade genes of Arabidopsis. GmMYB133 displayed a non-rhythmical but salt-inducible expression pattern. Like AtRVE8, overexpression of GmMYB133 in Arabidopsis led to developmental defects such as short hypocotyl and late flowering. Seven light-responsive or auxin-associated genes including AtPIF4 were transcriptionally depressed by GmMYB133, suggesting that GmMYB133 might negatively regulate plant growth. Noticeably, the overexpression of GmMYB133 in Arabidopsis promoted seed germination and plant growth under salt stress, and the contents of chlorophylls and malondialdehyde (MDA) were also enhanced and decreased, respectively. Consistently, the expressions of four positive regulators responsive to salt tolerance were remarkably elevated by GmMYB133 overexpression, indicating that GmMYB133 might confer salt stress tolerance. Further observation showed that GmMYB133 overexpression perturbed the clock rhythm of AtPRR5, and yeast one-hybrid assay indicated that GmMYB133 could bind to the AtPRR5 promoter. Moreover, the retrieved ChIP-Seq data showed that AtPRR5 could directly target five clients including AtPIF4. Thus, a regulatory module GmMYB133-PRR5-PIF4 was proposed to regulate plant growth and salt stress tolerance. These findings laid a foundation to further address the functional roles of GmMYB133 and its regulatory mechanisms in soybean.


2021 ◽  
Author(s):  
Leonardo Duarte Rodrigues Alexandre ◽  
Rafael S. Costa ◽  
Rui Henriques

Motivation: Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omic data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. Results: DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to assess patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. A case study is provided to show the properties of the proposed method. Availability: DISA is freely available at https://github.com/JupitersMight/DISA under the MIT license.


2021 ◽  
Author(s):  
Byoung-Doo Lee ◽  
Yehyun Yim ◽  
Esther Cañibano ◽  
Suk-Hwan Kim ◽  
Marta García-León ◽  
...  

AbstractUnder favorable moisture, temperature and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGL2, a major repressor of germination in Arabidopsis seeds. Analysis of seed germination phenotypes of constitutively photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacts directly with RGL2 and in vivo this interaction is strongly enhanced by SPA1. COP1 directly ubiquitinates RGL2 to promote its degradation. Moreover, GA stabilizes COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a novel mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2665
Author(s):  
Julio Garighan ◽  
Etienne Dvorak ◽  
Joan Estevan ◽  
Karine Loridon ◽  
Bruno Huettel ◽  
...  

Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.


2021 ◽  
Vol 182 ◽  
pp. 111707
Author(s):  
Wei Wei ◽  
Ying-ying Yang ◽  
Xin-guo Su ◽  
Jian-fei Kuang ◽  
Jian-ye Chen ◽  
...  

2021 ◽  
Author(s):  
Yosef Fichman ◽  
Haiyan Xiong ◽  
Soham Sengupta ◽  
Rajeev K Azad ◽  
Julian M Hibberd ◽  
...  

Plants are essential for life on Earth converting light into chemical energy in the form of sugars. To adjust for changes in light intensity and quality, and to become as efficient as possible in harnessing light, plants utilize multiple light receptors, signaling, and acclimation mechanisms. In addition to altering plant metabolism, development and growth, light cues sensed by some photoreceptors, such as phytochromes, impact on many plant responses to biotic and abiotic stresses. Central for plant responses to different stresses are reactive oxygen species (ROS) that function as key signaling molecules. Recent studies demonstrated that respiratory burst oxidase homolog (RBOH) proteins that reside at the plasma membrane and produce ROS at the apoplast play a key role in plant responses to different biotic and abiotic stresses. Here we reveal that phytochrome B (phyB) and RBOHs function as part of a key regulatory module that controls ROS production, transcript expression, and plant acclimation to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol, and that phyB, RBOHD and RBOHF co-regulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Taken together, our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating ROS production, and that phyB and RBOHs function in the same pathway.


2021 ◽  
Author(s):  
Helen A Brown ◽  
Charles AC Williams ◽  
Houjiang Zhou ◽  
Diana Rios-Szwed ◽  
Rosalia Fernandez-Alonso ◽  
...  

The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative-feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.


2021 ◽  
Author(s):  
Kaustav Gangopadhyay ◽  
Arnab Roy ◽  
Athira Chandradasan ◽  
Swarnendu Roy ◽  
Olivia Debnath ◽  
...  

T cell signaling starts with assembling several tyrosine kinases and adaptor proteins to the T cell receptor (TCR), following the antigen binding. The lifetime of the TCR: antigen complex and the time delay between the recruitment and activation of each kinase determines the T cell response. The mechanism by which the time delays are implemented in TCR signaling is not fully understood. Combining experiments and kinetic modeling, we here report a thermodynamic-brake in the regulatory module of ZAP-70, which determines the ligand selectivity, and may delay the ZAP-70 activation in TCR. Phylogenetic analysis revealed that the evolution of the thermodynamic-brake coincides with the divergence of the adaptive immune system to the cell-mediated and humoral responses. Paralogous kinase Syk expressed in B cells, does not possess such a functional thermodynamic brake, which may explain higher basal activation and lack of ligand selectivity by Syk.


Sign in / Sign up

Export Citation Format

Share Document