perivascular cell
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Julia Baumann ◽  
Chih-Chieh Tsao ◽  
Shalmali Patkar ◽  
Sheng-Fu Huang ◽  
Simona Francia ◽  
...  

Abstract Background Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell–cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood–brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. Methods To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. Results Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. Conclusion This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


2021 ◽  
Author(s):  
Maohua Huang ◽  
Mingqun Liu ◽  
Dandan Huang ◽  
Yanping Ma ◽  
Geni Ye ◽  
...  

Author(s):  
Pradeep Ramalingam ◽  
Jason M. Butler ◽  
Michael G. Poulos

Abstract Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seungyong Lee ◽  
Charles Hwang ◽  
Simone Marini ◽  
Robert J. Tower ◽  
Qizhi Qin ◽  
...  

AbstractPain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.


Author(s):  
Georgina Goss ◽  
Emanuel Rognoni ◽  
Vasiliki Salameti ◽  
Fiona M. Watt

We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70–80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S43
Author(s):  
A. Gasner ◽  
P. Mander ◽  
A. Gauthier-Fisher ◽  
H. Shuster Hyman ◽  
L. Lopez ◽  
...  

2021 ◽  
Author(s):  
Shuyun Li ◽  
Bidur Bhandary ◽  
Tony DeFalco

AbstractGranulosa cells, supporting cells of the ovary, are essential for ovarian differentiation by providing a nurturing environment for oogenesis. Sufficient numbers of granulosa cells are vital for establishment of follicles and the oocyte reserve; therefore, identifying the cellular source from which granulosa cells are derived is critical for understanding basic ovarian biology. One cell type that has received little attention in this field is the perivascular cell. Here we use lineage tracing and organ culture techniques in mice to identify ovarian Nestin+ perivascular cells as multipotent progenitors that contribute to granulosa, thecal, and pericyte lineages. Maintenance of these progenitors was dependent on vascular-mesenchymal Notch signaling. Ablation of postnatal Nestin+ cells resulted in a disruption of granulosa cell specification and an increased incidence of polyovular ovarian follicles, thus uncovering key roles for vasculature in ovarian differentiation. These findings may provide new insights into the origins of female gonad dysgenesis and infertility.


2021 ◽  
Author(s):  
Sarah J. Pfau ◽  
Urs H. Langen ◽  
Theodore M. Fisher ◽  
Indumathi Prakash ◽  
Faheem Nagpurwala ◽  
...  

SUMMARYThe blood-brain barrier (BBB) is critical for protecting the brain and maintaining neuronal homeostasis. Although the BBB is a unique feature of the central nervous system (CNS) vasculature, not all brain regions have the same degree of impermeability. Differences in BBB permeability are important for controlling the local extracellular environment of specific brain regions to regulate the function and plasticity of particular neural circuits. However, how BBB heterogeneity occurs is poorly understood. Here, we demonstrate how regional specialization of the BBB is achieved. With unbiased cell profiling in small, defined brain regions, we compare the median eminence, which has a naturally leaky BBB, with the cortex, which has an impermeable BBB. We identify hundreds of molecular differences in endothelial cells (ECs) and demonstrate the existence of differences in perivascular astrocytes and pericytes in these regions, finding 3 previously unknown subtypes of astrocytes and several key differences in pericytes. By serial electron microscopy reconstruction and a novel, aqueous-based tissue clearing imaging method, we further reveal previously unknown anatomical specializations of these perivascular cells and their unique physical interactions with neighboring ECs. Finally, we identify ligand-receptor pairs between ECs and perivascular cells that may regulate regional BBB integrity in ECs. Using a bioinformatic approach we identified 26 and 26 ligand-receptor pairs underlying EC-pericyte and EC-astrocyte interactions, respectively. Our results demonstrate that differences in ECs, together with region-specific physical and molecular interactions with local perivascular cells, contribute to BBB functional heterogeneity. These regional cell inventories serve as a platform for further investigation of the dynamic and heterogeneous nature of the BBB in other brain regions. Identification of local BBB specializations provides insight into the function of different brain regions and will permit the development of region-specific drug delivery in the CNS.


2021 ◽  
Author(s):  
Andrew C. Yang ◽  
Ryan T. Vest ◽  
Fabian Kern ◽  
Davis P. Lee ◽  
Christina A. Maat ◽  
...  

AbstractThe human brain vasculature is of vast medical importance: its dysfunction causes disability and death, and the specialized structure it forms—the blood-brain barrier—impedes treatment of nearly all brain disorders. Yet, no molecular atlas of the human brain vasculature exists. Here, we develop Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to profile the major human brain vascular and perivascular cell types through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 17 control and Alzheimer’s disease (AD) patients. We identify brain region-enriched pathways and genes divergent between humans and mice, including those involved in disease. We describe the principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum; but discover that many zonation and cell-type markers differ between species. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In AD, we observe a selective vulnerability of ECM-maintaining pericytes and gene expression patterns implicating dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 AD GWAS genes are expressed in the human brain vasculature, confirmedin situ. Vascular GWAS genes map to endothelial protein transport, adaptive immune, and ECM pathways. Many are microglia-specific in mice, suggesting an evolutionary transfer of AD risk to human vascular cells. Our work unravels the molecular basis of the human brain vasculature, informing our understanding of overall brain health, disease, and therapy.


Sign in / Sign up

Export Citation Format

Share Document