The combined tower crane foundation is widely used in construction sites due to its advanced utilization rate. However, the immature construction method, unavoidable construction deviation during the installation process, and influence of the surrounding construction generally cause the lattice columns to tilt. As the main force transmission components of the tower crane foundation, once its stress and deformation exceed the limit, the entire tower crane will collapse, which requires engineers to accurately control its safety. Therefore, the objective of the work reported here was to study the safety of the lattice columns during operation. A geometrically nonlinear finite element model was utilized to simulate the strain and deformation capacity of tower cranes under various working conditions, including vertical and inclined working conditions, operation and shutdown conditions, and conditions with the tower boom in different orientations. In addition, this study combines the simulation with the on-site measurement. The results of on-site measurement were also recorded to verify the correctness of the proposed calculation model. It was concluded that the inclination of lattice columns has a significant effect on the deformation and stress of the lattice columns of the tower crane foundation, and the measured data and the calculated data trend are consistent. Engineers can accurately judge the safety of the lattice columns of the tower crane foundation through geometric nonlinear finite element model analysis and on-site monitoring to avoid the failure of the lattice columns and the occurrence of safety accidents.