frp confinement
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Junjie Zeng ◽  
Tianwei Long

In this study, a novel form of tubular columns that is made of ultra-high-performance concrete (UHPC) internally reinforced with fiber-reinforced polymer (FRP) grid (herein referred to as FRP grid-UHPCtubular column) was developed. The axial compression test results of FRP grid-UHPC tubular columns with and without in-filled concrete are presented and discussed. Effects of the number of the FRP grid-reinforcing cages, the presence of in-filled concrete, and the presence of external FRP confinement were investigated. The test results confirmed that the FRP-UHPC tubular columns have a satisfactory compressive strength, and the strength and ductility of FRP-confined concrete-filled FRP grid-UHPC tube columns are enhanced due to the confinement from the FRP wrap. The proposed FRP grid-reinforced UHPC composite tubes are attractive in structural applications as pipelines or permanent formworks for columns, as well as external jackets (can be prefabricated in the form of two halves of tubes) for strengthening deteriorated reinforced concrete columns.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li-Jun Ouyang ◽  
Xiao-Xiao Wei ◽  
Bin Ding ◽  
Wan-Yang Gao

It is widely accepted that concrete columns confined with fiber-reinforced polymer (FRP) jackets exhibit significant increases in strength and ductility with reference to the unconfined case. Existing experimental studies have indicated that the hoop rupture strains measured in the FRP jackets are significantly lower than the material strain capacity determined by the flat coupon tensile tests. An FRP efficiency factor is then usually used to define the ratio of the average hoop rupture strain to the material strain capacity of the FRP jackets, which governs the lateral FRP confinement as well as the peak strength and ultimate strain of the FRP-confined concrete under axial compression. FRP jackets are also expected to be a promising solution to repair damaged RC columns after fire exposure. However, there is lacking research on the behavior of FRP-confined fire or heat-damaged concrete columns. In particular, the FRP efficiency factor of FRP-confined fire or heat-damaged concrete columns has not yet been established. The study presents the results of an experimental study aimed to investigate the effects of the historical high temperature and the layer of basalt FRP (BFRP) jackets on the efficiency factor of BFRP for the confined heat-damaged concrete cylinders. A sum of 51 standard concrete cylinders is prepared and tested under axial compression. The parameters varied between tests are the historical high temperature (200°C, 400°C, 600°C, or 800°C) that is used to produce the heat damage of concrete cylinders and the number of layers of BFRP jackets (2, 3, or 4). The test results have indicated that the efficiency factor of BFRP jackets increases with the historical high temperature but decreases slightly with the increase in the BFRP layers. A new temperature-dependent design equation for the BFRP efficiency factor of the confined heat-damaged concrete is proposed to consider the effects of the parameters mentioned above and can be used for practical design.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1778
Author(s):  
Elhem Ghorbel ◽  
Mariem Limaiem ◽  
George Wardeh

This research investigates the effectiveness of bio-sourced flax fiber-reinforced polymer in comparison with a traditional system based on carbon fiber-reinforced epoxy polymer in order to confine recycled aggregate concretes. The experimental investigation was conducted on two series of concrete including three mixtures with 30%, 50%, and 100% of recycled aggregates and a reference concrete made with natural aggregates. The concrete mixtures were intended for a frost environment where an air-entraining agent was added to the mixture of the second series to achieve 4% air content. The first part of the present work is experimental and aimed to characterize the compressive performance of confined materials. The results indicated that bio-sourced composites are efficient in strengthening recycled aggregates concrete, especially the air-entrained one. It was also found that the compressive strength and the strain enhancement obtained from FRP confinement are little affected by the replacement ratio. The second part was dedicated to the analytical modeling of mechanical properties and stress–strain curves under compression. With the most adequate ultimate strength and strain prediction relationships, the full behavior of FRP-confined concrete can be predicted using the model developed by Ghorbel et al. to account for the presence of recycled aggregates in concrete mixtures.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Francesco Micelli ◽  
Alessio Cascardi ◽  
Maria Antonietta Aiello

The axial compression strength of concrete columns has been proved to be significantly enhanced by external confinement. In this perspective, the use of Fiber-Reinforced Polymers (FRPs) has been extensively studied. In practical applications, the FRP-confinement is installed on loaded columns, which can already be significantly deformed, while theoretical models neglect this aspect. This paper concerns a new experimental investigation on the possibility that a pre-existing axial load affects the FRP-confinement of concrete. The research program also aimed at the development of a new analysis-oriented-model for the prediction of the compressive strength of FRP-jacketed concrete columns, depending on the level of the axial load, acting before the confinement. For this purpose, series of small-scale concrete cylinders were first loaded, then confined with Carbon FRP, and finally subjected to destructive pure axial compression tests. Four different levels of pre-existing loads were simulated, including the un-loaded condition.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2367
Author(s):  
Luis Estevan ◽  
F. Javier Baeza ◽  
Francisco B. Varona ◽  
Salvador Ivorra

The mechanical properties of stone materials can be severely affected by exposure to high temperatures. The effect of fire on stone buildings could cause irreversible damage and make it necessary to retrofit the affected elements. Particularly, the strengthening of columns by confinement with composites has been widely improved during the last decades. Today, fiber reinforced polymer (FRP) confinement represents a very interesting alternative to traditional steel solutions. This work studied the behavior of cylindrical stone specimens subjected to real fire action and confined by means of CFRP or GFRP jackets, with the aim of assessing the effectiveness of these reinforcement systems applied to a material that has previously been seriously damaged by high temperature exposure. In general, the strengthened samples showed notable increases in strength and ductility. The response seemed to depend basically on the FRP properties and not on the degree of damage that the stone core may have suffered. Finally, the results obtained experimentally were compared with the confinement models proposed by the available design guides, in order to evaluate the accuracy that these models can offer under the different situations addressed in this research.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 811
Author(s):  
Afaq Ahmad ◽  
Vagelis Plevris ◽  
Qaiser-uz-Zaman Khan

Recently, the use of fiber-reinforced polymers (FRP)-confinement has increased due to its various favorable effects on concrete structures, such as an increase in strength and ductility. Therefore, researchers have been attracted to exploring the behavior and efficiency of FRP-confinement for concrete structural elements further. The current study investigates improved strength and strain models for FRP confined concrete cylindrical elements. Two new physical methods are proposed for use on a large preliminary evaluated database of 708 specimens for strength and 572 specimens for strain from previous experiments. The first approach is employing artificial neural networks (ANNs), and the second is using the general regression analysis technique for both axial strength and strain of FRP-confined concrete. The accuracy of the newly proposed strain models is quite satisfactory in comparison with previous experimental results. Moreover, the predictions of the proposed ANN models are better than the predictions of previously proposed models based on various statistical indices, such as the correlation coefficient (R) and mean square error (MSE), and can be used to assess the members at the ultimate limit state.


2020 ◽  
Vol 252 ◽  
pp. 118924 ◽  
Author(s):  
J.D. Carter ◽  
M. Abdulazeez ◽  
M.A. ElGawady ◽  
K.H. Khayat

Sign in / Sign up

Export Citation Format

Share Document