abelian surfaces
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 28 (2) ◽  
Author(s):  
Andrés Rojas

AbstractFor abelian surfaces of Picard rank 1, we perform explicit computations of the cohomological rank functions of the ideal sheaf of one point, and in particular of the basepoint-freeness threshold. Our main tool is the relation between cohomological rank functions and Bridgeland stability. In virtue of recent results of Caucci and Ito, these computations provide new information on the syzygies of polarized abelian surfaces.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Andreas Krug ◽  
Ciaran Meachan

AbstractWe consider certain universal functors on symmetric quotient stacks of Abelian varieties. In dimension two, we discover a family of $${{\mathbb {P}}}$$ P -functors which induce new derived autoequivalences of Hilbert schemes of points on Abelian surfaces; a set of braid relations on a holomorphic symplectic sixfold; and a pair of spherical functors on the Hilbert square of an Abelian surface, whose twists are related to the well-known Horja twist. In dimension one, our universal functors are fully faithful, giving rise to a semiorthogonal decomposition for the symmetric quotient stack of an elliptic curve (which we compare to the one discovered by Polishchuk–Van den Bergh), and they lift to spherical functors on the canonical cover, inducing twists which descend to give new derived autoequivalences here as well.


Author(s):  
G. K. Sankaran

AbstractThe 15 primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 are called the supersingular primes: they occur in several contexts in number theory and also, strikingly, they are the primes that divide the order of the Monster. It is also known that the moduli space of (1, p)-polarised abelian surfaces is of general type for these primes. In this note, we explain that apparently coincidental fact by relating it to other number-theoretic occurences of the supersingular primes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiangwei Xue ◽  
Chia-Fu Yu ◽  
Yuqiang Zheng

Author(s):  
George Boxer ◽  
Frank Calegari ◽  
Toby Gee ◽  
Vincent Pilloni

AbstractWe show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces $A$ A over ${\mathbf {Q}}$ Q with $\operatorname{End}_{ {\mathbf {C}}}A={\mathbf {Z}}$ End C A = Z . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.


Author(s):  
Thomas Bauer ◽  
Maximilian Schmidt

AbstractSeshadri constants on abelian surfaces are fully understood in the case of Picard number one. Little is known so far for simple abelian surfaces of higher Picard number. In this paper we investigate principally polarized abelian surfaces with real multiplication. They are of Picard number two and might be considered the next natural case to be studied. The challenge is to not only determine the Seshadri constants of individual line bundles, but to understand the whole Seshadri function on these surfaces. Our results show on the one hand that this function is surprisingly complex: on surfaces with real multiplication in $$\mathbb {Z}[\sqrt{e}]$$ Z [ e ] it consists of linear segments that are never adjacent to each other—it behaves like the Cantor function. On the other hand, we prove that the Seshadri function is invariant under an infinite group of automorphisms, which shows that it does have interesting regular behavior globally.


Sign in / Sign up

Export Citation Format

Share Document