molecular aggregates
Recently Published Documents


TOTAL DOCUMENTS

571
(FIVE YEARS 76)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Jingyi Zhao ◽  
Xiaoyan Zheng

Luminescent molecular aggregates have attracted worldwide attention because of their potential applications in many fields. The luminescent properties of organic aggregates are complicated and highly morphology-dependent, unraveling the intrinsic mechanism behind is urgent. This review summarizes recent works on investigating the structure–property relationships of organic molecular aggregates at different environments, including crystal, cocrystal, amorphous aggregate, and doped systems by multiscale modeling protocol. We aim to explore the influence of intermolecular non-covalent interactions on molecular packing and their photophysical properties and then pave the effective way to design, synthesize, and develop advanced organic luminescent materials.


Author(s):  
Ulugbek Barotov ◽  
Megan D. Klein ◽  
Lili Wang ◽  
Moungi G. Bawendi

2021 ◽  
pp. 118340
Author(s):  
Subhankar Kundu ◽  
Subhajit Saha ◽  
Ajit Das ◽  
Labhini Singla ◽  
Angshuman Roy Choudhury ◽  
...  

2021 ◽  
Vol 155 (12) ◽  
pp. 124310
Author(s):  
T. Kunsel ◽  
L. M. Günther ◽  
J. Köhler ◽  
T. L. C. Jansen ◽  
J. Knoester

2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bradbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bardbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


Sign in / Sign up

Export Citation Format

Share Document