insertion event
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chien-Hui Ma ◽  
Kamyab Javanmardi ◽  
Ilya J Finkelstein ◽  
Makkuni Jayaram

‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3′-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.


Author(s):  
Greg S. Goralogia ◽  
Thomas P. Redick ◽  
Steven H. Strauss

AbstractBecause of the limitations inherent in conventional breeding of trees and clonally propagated crops, gene editing is of great interest. Dozens of published papers attest to the high efficiency of CRISPR-based systems in clonal crops and trees. The opportunity for “clean” edits is expected to avoid or reduce regulatory burdens in many countries and may improve market acceptance. To date, however, nearly all studies in trees and clonal crops retained all of the gene editing machinery in the genome. Despite high gene editing efficiency, technical and regulatory obstacles are likely to greatly limit progress toward commercial use. Technical obstacles include difficult and slow transformation and regeneration, delayed onset of flowering or clonal systems that make sexual segregation of CRISPR-associated genes difficult, inefficient excision systems to enable removal of functional (protein- or RNA-encoding) transgenic DNA, and narrow host range or limited gene-payload viral systems for efficient transient editing. Regulatory obstacles include those such as in the EU where gene-edited plants are regulated like GMO crops, and the many forms of method-based systems that regulate stringently based on the method vs. product novelty and thus are largely applied to each insertion event. Other major obstacles include the provisions of the Cartagena Protocol with respect to international trade and the need for compliance with the National Environmental Policy Act in the USA. The USDA SECURE act has taken a major step toward a more science- and risk-based—vs. method and insertion event based—system, but much further regulatory and legal innovation is needed in the USA and beyond.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ann M. Callahan ◽  
Tetyana N. Zhebentyayeva ◽  
Jodi L. Humann ◽  
Christopher A. Saski ◽  
Kelsey D. Galimba ◽  
...  

Abstract‘HoneySweet’ plum (Prunus domestica) is resistant to Plum pox potyvirus, through an RNAi-triggered mechanism. Determining the precise nature of the transgene insertion event has been complicated due to the hexaploid genome of plum. DNA blots previously indicated an unintended hairpin arrangement of the Plum pox potyvirus coat protein gene as well as a multicopy insertion event. To confirm the transgene arrangement of the insertion event, ‘HoneySweet’ DNA was subjected to whole genome sequencing using Illumina short-read technology. Results indicated two different insertion events, one containing seven partial copies flanked by putative plum DNA sequence and a second with the predicted inverted repeat of the coat protein gene driven by a double 35S promoter on each side, flanked by plum DNA. To determine the locations of the two transgene insertions, a phased plum genome assembly was developed from the commercial plum ‘Improved French’. A subset of the scaffolds (2447) that were >10 kb in length and representing, >95% of the genome were annotated and used for alignment against the ‘HoneySweet’ transgene reads. Four of eight matching scaffolds spanned both insertion sites ranging from 157,704 to 654,883 bp apart, however we were unable to identify which scaffold(s) represented the actual location of the insertion sites due to potential sequence differences between the two plum cultivars. Regardless, there was no evidence of any gene(s) being interrupted as a result of the insertions. Furthermore, RNA-seq data verified that the insertions created no new transcriptional units and no dramatic expression changes of neighboring genes.


2020 ◽  
Author(s):  
Chien-Hui Ma ◽  
Kamyab Javanmardi ◽  
Ilya J. Finkelstein ◽  
Makkuni Jayaram

Abstract‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here we challenge this view with a biochemical investigation of the mechanism of protospacer insertion by the Streptococcus pyogenes Cas1-Cas2 complex, which is mechanistically analogous to DNA transposition. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete proto-spacer insertions. The second insertion event is most often accompanied by disintegration of the first, mediated either by the 3’-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.


1995 ◽  
Vol 16 (1) ◽  
pp. 1607-1611 ◽  
Author(s):  
Manfred Kayser ◽  
Peter Nürnberg ◽  
Fred Bercovitch ◽  
Marion Nagy ◽  
Lutz Roewer

1993 ◽  
Vol 2 (4) ◽  
pp. 465-467 ◽  
Author(s):  
Danielle Pham-Dinh ◽  
Odile Boespflug-Tanguy ◽  
Corinne Mimault ◽  
Annie Cavagna ◽  
Geneviève Giraud ◽  
...  

1988 ◽  
Vol 52 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Walter F. Eanes ◽  
Cedric Wesley ◽  
Jody Hey ◽  
David Houle ◽  
James W. Ajioka

SummaryIn this study we estimate the frequency at which P-element insertion events, as identified by in situ hybridization, generate lethal and mild viability mutations. The frequency of lethal mutations generated per insertion event was 0·004. Viability dropped an average of 1% per insertion event. Our results indicate that it is deletions and rearrangements resulting from the mobilization of P elements already in place and not the insertions per se that cause the drastic effects on viability and fitness observed in most studies of P–M dysgenesis-derived mutations. Elements of five other families (I, copia, 412, B104, and gypsy) were not mobilized in these crosses. Finally, we contrast the density of P elements on the X chromosome with the density on the four autosomal arms in a collection of thirty genomes from an African population. The relative number of P elements on the X chromosome is too high to be explained by either a hemizygous selection or a neutrality model. The possible reasons for the failure to detect selection are discussed.


Sign in / Sign up

Export Citation Format

Share Document