organic shell
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 3)

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2437
Author(s):  
Momoka Nagamine ◽  
Magdalena Osial ◽  
Justyna Widera-Kalinowska ◽  
Krystyna Jackowska ◽  
Paweł Krysiński

Comparative photoelectrochemical studies of cadmium sulfide (CdS) nanoparticles with either hydrophilic or hydrophobic surface properties are presented. Oleylamine organic shells provided CdS nanoparticles with hydrophobic behavior, affecting the photoelectrochemical properties of such nanostructured semiconductor. Hydrophilic CdS nanoparticles were drop-cast on the electrode, whereas the hydrophobic ones were transferred in a controlled manner with Langmuir-Blodgett technique. The substantial hindrance of photopotential and photocurrent was observed for L-B CdS films as compared to the hydrophilic, uncoated nanoparticles that were drop-cast directly on the electrode surface. The electron lifetime in both hydrophilic and hydrophobic nanocrystalline CdS was determined, revealing longer carrier lifetime for oleylamine coated CdS nanoparticles, ascribed to the trapping of charge at the interface of the organic shell/CdS nanoparticle and to the dominant influence of the resistance of the organic shell against the flux of charges. The “on” transients of the photocurrent responses, observed only for the oleylamine-coated nanoparticles, were resolved, yielding the potential-dependent rate constants of the redox processes occurring at the interface.


Author(s):  
Takaaki Tomai ◽  
Naoya Tajima ◽  
Motoyuki Kimura ◽  
Akira Yoko ◽  
Gimyeong Seong ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 875
Author(s):  
Aleksander Promiński ◽  
Ewelina Tomczyk ◽  
Mateusz Pawlak ◽  
Agnieszka Jędrych ◽  
Józef Mieczkowski ◽  
...  

Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.


2019 ◽  
Vol 85 (4) ◽  
pp. 71-80
Author(s):  
Mariana Gumenna ◽  
Nina Klimenko ◽  
Alexandr Stryutsky ◽  
Alexandr Shevchuk ◽  
Viktor Kravchenko ◽  
...  

A method for the synthesis of reactive oligomeric silsesquioxanes, combining fragments of azo dye 4-(phenylazo)phenol and fluorescent dye Rhodamine B in various proportions in an organic shell was developed. These compounds were obtained by the reaction between the oligosilsesquioxane nanoparticles consisting of a mixture of linear, branched, ladder and polyhedral structures with epoxy groups in an organic frame (OSS–Ep) and the dyes. The structure of the synthesized substances was characterized by the methods of IR and 1H NMR spectroscopy. The UV-Vis spectra of OSS–Pp–Rh in DMF solution contain absorption bands characteristic of both acidic (560 and 350 nm) and lactone (in the range of 318–326 nm) forms of Rhodamine B. The absorption band of 4-(phenylazo) phenol fragments corresponding to π−π* transition is observed at 348 nm and overlaps the absorption band of Rhodamine B at 350 nm.The intensity of the absorption bands of fragments of various dyes depends on their content in organic frame of the silsesquioxane core. The intensity of the absorption bands at 348 nm and at 560 nm increases with an increase in the content of 4-(phenylazo)phenol and Rhodamine B correspondingly.It should be noted that when using DMF as a solvent the absorption band corresponding to acidic form of Rhodamine B at 560 nm in the UV-Vis spectra of the compounds obtained is more intense than similar band in the spectrum of the original Rhodamine B. Therefore, the attachment of Rhodamine B to the silsesquioxane core of oligomeric silsesquioxanes mixture does not have a significant effect on the position of absorption maxima in the UV-spectrum and prevents dye’s fragments from converting to the colorless lactone form. In the fluorescence spectra of OSS–Pp–Rh obtained using DMF as a solvent a peak at λ max = 592 nm (λex= 520 nm) is observed. The position of the fluorescence peak and its intensity in the spectra at the same optical density of the medium practically do not depend on the ratio of fragments of 4-(phenylazo)phenol and Rhodamine B in organic frame of OSS–Pp–Rh.  The combination of two different chromophores in organic shell of the silsesquioxane core broadens the range of absorbed light and the change of their ratio allows to adjust the absorption intensity in a certain area. The presence of hydroxyl groups makes it possible to introduce the obtained compounds into the composition of polymeric organic-inorganic nanocomposites by covalent bonding.


Author(s):  
Lianjia Wu ◽  
Michaela Vockenhuber ◽  
Yasin Ekinci ◽  
Sonia Castellanos Ortega

2019 ◽  
Vol 85 (1) ◽  
pp. 47-57
Author(s):  
Mariana Gumenna ◽  
Nina Klimenko ◽  
Alexandr Stryutsky ◽  
Alexandr Shevchuk ◽  
Viktor Kravchenko

A method for the synthesis of amphiphilic reactive oligomeric silsesquioxanes (OSS) with fragments of Rhodamine B fluorescent dye and hydroxyl groups in organic shell (OSS-Rh) by the reaction between carboxyl groups of the dye and epoxy groups of the mixture of oligomeric silsesquioxanes (OSS-Ep) was developed. The structure of the synthesized substance was characterized by the methods of IR and 1H NMR spectroscopy. The UV-spectrum of the OSS-Rh compound in dimethylformamide (DMF) solution was characterized by absorption bands of both the colored zwitterion (562 nm and 350 nm) and the colorless lactone (318 nm) forms of Rhodamine B. The absorption band at 562 nm in the spectrum of OSS-Rh in DMF solution was more intense than the analogous band in the spectrum of the original Rhodamine B. Therefore, the attachment of Rhodamine B to the silsesquioxane core of an oligomeric silsesquioxanes mixture does not have a significant effect on the position of the absorption maxima in UV-spectrum and prevents dye’s fragments from converting to the colorless lactone form. In the fluorescence spectra of both Rhodamine B and OSS-Rh, obtained using ethyl alcohol as a solvent, a peak is observed at λmax = 570 nm (λex = 500 nm). In the fluorescence spectrum of OSS-Rh obtained in DMF, a fluorescence peak is observed at λmax = 586 nm (λex = 520 nm). Consequently, the replacement of ethanol by DMF is accompanied by a bathochromic shift of the fluorescence peak of OSS-Rh. In the fluorescence spectrum of Rhodamine B at the same conditions, the peak of fluorescence is absent because of transition of the dye to the lactone form. The compounds obtained can be used in formation of functional Langmuir-Blodgett films as well as in obtaining polymer nanocomposites by covalent bonding.


2019 ◽  
Vol 1 (2) ◽  
pp. 664-670 ◽  
Author(s):  
Yury A. Barnakov ◽  
Ighodalo U. Idehenre ◽  
Sergey A. Basun ◽  
Trevor A. Tyson ◽  
Dean R. Evans

A crystalline organic shell provides a 650 times increase in spontaneous polarization in nanoscale BaTiO3 core–shell superparticles.


2019 ◽  
Vol 7 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Lianjia Wu ◽  
Martijn Tiekink ◽  
Alexandre Giuliani ◽  
Laurent Nahon ◽  
Sonia Castellanos

Aromatic structures in organic shell stabilize photoionization products of metal oxo clusters, a new type of materials for EUV lithography.


2019 ◽  
Vol 1 (3) ◽  
pp. 973-979 ◽  
Author(s):  
Cibele Carneiro Pessan ◽  
Bruno Henrique Ramos de Lima ◽  
Edson Roberto Leite

Molten organic shell of hybrid Mag@PB1000 nanoparticles, covalently attached to the matrix, yields unexpected mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document