reduce power consumption
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 30
Author(s):  
Gayoung Kim ◽  
Minjoong Rim

This paper proposes a new duty-cycle-based protocol for transmitting emergent data with high priority and low latency in a sensor network environment. To reduce power consumption, the duty cycle protocol is divided into a listen section and a sleep section, and data can only be received when the receiving node is in the listen section. In this paper, high-priority transmission preempts low-priority transmission by distinguishing between high-priority preamble and low-priority preamble. However, even when a high priority transmission preempts a low priority transmission such that the high priority transmission is received first, if the sleep period is very long, the delay may be large. To solve this problem, the high priority short preamble and high priority data reduce receiver sensitivity and increase coverage through repeated transmission. If there are several receiving nodes within a wide coverage, the receiving node that wakes up first can receive the transmission, thus reducing the delay. The delay can also be further reduced by alternately reducing the sleep cycle of one node among the receiving nodes that can receive it. This paper shows that emergent data can be transmitted effectively and reliably by reducing the delay of high-priority data to a minimum through the use of preemption, coverage extension, and an asymmetric sleep cycle.


2021 ◽  
pp. 100306
Author(s):  
Xiaopu Peng ◽  
Tathagata Bhattacharya ◽  
Ting Cao ◽  
Jianzhou Mao ◽  
Taha Tekreeti ◽  
...  

Author(s):  
Étienne André ◽  
Rémi Dulong ◽  
Amina Guermouche ◽  
François Trahay

Author(s):  
Sheba Diamond Thabah ◽  
Prabir Saha

Over the last decades, designing reversible arithmetic circuits is one of the interesting research areas because of its ability to reduce power consumption in the circuits. This paper proposes two new design approaches of reversible binary-coded decimal (BCD) multiplier. The realization of such BCD multiplier has been achieved through binary multipliers, multiplexers, and a binary-to-BCD converter. Four types of multiplications, viz. [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] multiplications, have been utilized for such binary multiplication and are implemented parallelly as a combined multiplier to reduce ancilla inputs (AIs) and garbage outputs (GOs). We also propose a novel reversible BCD adder for a reversible binary-to-BCD converter with reducing AIs and GOs. The first design of the reversible BCD multiplier is integrated with the proposed BCD adder in the binary-to-BCD converter. Furthermore, the proposed reversible BCD adder is modified to reduce the AIs and the GOs, which is then integrated into the second design of the reversible BCD multiplier. The results offer appreciable reductions of AIs and GOs by at least [Formula: see text]16% and [Formula: see text]43%, respectively, compared to the existing designs found in the literature.


2020 ◽  
Author(s):  
Syed Hashim Ali Shah ◽  
Sundar Aditya ◽  
Sundeep Rangan

Discontinuous reception (DRX), wherein a user equipment (UE) temporarily disables its receiver, is a critical power saving feature in modern cellular systems. DRX is likely to be aggressively used at mmWave and sub-THz frequencies due to the high front-end power consumption. A key challenge for DRX at these frequencies is blockage-induced link outages: A UE will likely need to track many directional links to ensure reliable multi-connectivity, thereby increasing the power consumption. In this paper, we explore reinforcement learning-based link tracking policies in connected mode DRX that reduce power consumption by tracking only a fraction of the available links, but without adversely affecting the outage and throughput performance. Through detailed, system level simulations at 28 GHz (5G) and 140 GHz (6G), we observe that even sub-optimal link tracking policies can achieve considerable power savings with relatively little degradation in outage and throughput performance, especially with digital beamforming at the UE. In particular, we show that it is feasible to reduce power consumption by 75% and still achieve up to 95% (80%) of the maximum throughput using digital beamforming at 28 GHz (140 GHz), subject to an outage probability of at most 1%.


2020 ◽  
Author(s):  
Syed Hashim Ali Shah ◽  
Sundar Aditya ◽  
Sundeep Rangan

Discontinuous reception (DRX), wherein a user equipment (UE) temporarily disables its receiver, is a critical power saving feature in modern cellular systems. DRX is likely to be aggressively used at mmWave and sub-THz frequencies due to the high front-end power consumption. A key challenge for DRX at these frequencies is blockage-induced link outages: A UE will likely need to track many directional links to ensure reliable multi-connectivity, thereby increasing the power consumption. In this paper, we explore reinforcement learning-based link tracking policies in connected mode DRX that reduce power consumption by tracking only a fraction of the available links, but without adversely affecting the outage and throughput performance. Through detailed, system level simulations at 28 GHz (5G) and 140 GHz (6G), we observe that even sub-optimal link tracking policies can achieve considerable power savings with relatively little degradation in outage and throughput performance, especially with digital beamforming at the UE. In particular, we show that it is feasible to reduce power consumption by 75% and still achieve up to 95% (80%) of the maximum throughput using digital beamforming at 28 GHz (140 GHz), subject to an outage probability of at most 1%.


2020 ◽  
Author(s):  
Syed Hashim Ali Shah ◽  
Sundeep Rangan ◽  
Sundar Aditya

Discontinuous reception (DRX), wherein a user equipment (UE) temporarily disables its receiver, is a critical power saving feature in modern cellular systems. DRX is likely to be aggressively used at mmWave and sub-THz frequencies due to the high front-end power consumption. A key challenge for DRX at these frequencies is blockage-induced link outages: A UE will likely need to track many directional links to ensure reliable multi-connectivity, thereby increasing the power consumption. In this paper, we explore reinforcement learning-based link tracking policies in connected mode DRX that reduce power consumption by tracking only a fraction of the available links, but without adversely affecting the outage and throughput performance. Through detailed, system level simulations at 28 GHz (5G) and 140 GHz (6G), we observe that even sub-optimal link tracking policies can achieve considerable power savings with relatively little degradation in outage and throughput performance, especially with digital beamforming at the UE. In particular, we show that it is feasible to reduce power consumption by 75% and still achieve up to 95% (80%) of the maximum throughput using digital beamforming at 28 GHz (140 GHz), subject to an outage probability of at most 1%.


Author(s):  
Kailash Kumar Jha ◽  
Nishant ◽  
Alok Kumar Jangid ◽  
Ravi Pandappa Kamaladinni ◽  
Nitesh Pushpak Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document