ambient magnetic field
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 924 (1) ◽  
pp. 36
Author(s):  
Sang-Yun Lee ◽  
Peter H. Yoon ◽  
Ensang Lee ◽  
Weichao Tu

Abstract The recent Parker Solar Probe observations of type III radio bursts show that the effects of the finite background magnetic field can be an important factor in the interpretation of data. In the present paper, the effects of the background magnetic field on the plasma-emission process, which is believed to be the main emission mechanism for solar coronal and interplanetary type III radio bursts, are investigated by means of the particle-in-cell simulation method. The effects of the ambient magnetic field are systematically surveyed by varying the ratio of plasma frequency to electron gyrofrequency. The present study shows that for a sufficiently strong ambient magnetic field, the wave–particle interaction processes lead to a highly field-aligned longitudinal mode excitation and anisotropic electron velocity distribution function, accompanied by a significantly enhanced plasma emission at the second-harmonic plasma frequency. For such a case, the polarization of the harmonic emission is almost entirely in the sense of extraordinary mode. On the other hand, for moderate strengths of the ambient magnetic field, the interpretation of the simulation result is less clear. The underlying nonlinear-mode coupling processes indicate that to properly understand and interpret the simulation results requires sophisticated analyses involving interactions among magnetized plasma normal modes, including the two transverse modes of the magneto-active plasma, namely, the extraordinary and ordinary modes, as well as electron-cyclotron-whistler, plasma oscillation, and upper-hybrid modes. At present, a nonlinear theory suitable for quantitatively analyzing such complex-mode coupling processes in magnetized plasmas is incomplete, which calls for further theoretical research, but the present simulation results could provide a guide for future theoretical efforts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Wakita ◽  
B. C. Johnson ◽  
I. Garrick-Bethell ◽  
M. R. Kelley ◽  
R. E. Maxwell ◽  
...  

AbstractThe Moon presently has no dynamo, but magnetic fields have been detected over numerous portions of its crust. Most of these regions are located antipodal to large basins, leading to the hypothesis that lunar rock ejected during basin-forming impacts accumulated at the basin antipode and recorded the ambient magnetic field. However, a major problem with this hypothesis is that lunar materials have low iron content and cannot become strongly magnetized. Here we simulate oblique impacts of 100-km-diameter impactors at high resolution and show that an ~700 m thick deposit of potentially iron-rich impactor material accumulates at the basin antipode. The material is shock-heated above the Curie temperature and therefore may efficiently record the ambient magnetic field after deposition. These results explain a substantial fraction of the Moon’s crustal magnetism, and are consistent with a dynamo field strength of at least several tens of microtesla during the basin-forming epoch.


2021 ◽  
Vol 33 (7) ◽  
pp. 076602
Author(s):  
Guo-Liang Peng ◽  
Jun-Jie Zhang ◽  
Jian-Nan Chen ◽  
Tai-Jiao Du ◽  
Hai-Yan Xie

Elements ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Joshua M. Feinberg ◽  
Kathryn K. Hobart

No matter how quiet and pristine a cave setting may appear, all speleothems contain assemblages of magnetic minerals. These iron oxide minerals are derived largely from overlying soils, though minor fractions may come from the residuum of dissolved bedrock, reworked sediment carried by episodic floods, geomicrobiological activity, and even windblown dust. Regardless of their origin, these minerals become aligned with Earth’s ambient magnetic field before they are fixed within a speleothem’s growing carbonate matrix. Here, we describe how the magnetism of stalagmites and flowstone can be used to chronicle high-resolution geomagnetic behavior and environmental change.


2021 ◽  
Author(s):  
Guo-Liang Peng ◽  
Jun-Jie Zhang ◽  
Jian-Nan Chen ◽  
Tai-Jiao Du ◽  
Hai-Yan Xie

2021 ◽  
Author(s):  
Evgenii Shirokov

<p>A problem of scattering of oblique plane electromagnetic waves propagating in a cold non-gyrotropic plasma in the resonance frequency range by a thin finite-length conducting wire parallel to the ambient magnetic field is considered. The solution to the scattering theory integral equation for the current induced on the wire surface as well as the scattering field and cross section are found and analyzed. The approach is based on the perturbation theory that takes into account the thin wire approximation generalized to the case of the anisotropic plasma. Special attention is paid to the case of highly oblique quasi-electrostatic waves which scattering characteristics are quite unique. The results are important for analysis of (a) reception of electromagnetic waves in the space plasma using antennas onboard spacecraft and (b) diffraction of electromagnetic waves by long field-aligned plasma density irregularities in planetary magnetospheres under certain conditions.</p><p>This work was supported by the Russian Science Foundation under grant 20-12-00268.</p>


2021 ◽  
Author(s):  
Mengmeng Wang ◽  
Terry Z. Liu ◽  
Hui Zhang ◽  
Shichen Bai ◽  
Quanqi Shi ◽  
...  

<p>Foreshock bubbles (FBs) are kinetic phenomena that can form when a rotational discontinuity or a tangential discontinuity interacts with backstreaming ions in the Earth’s foreshock region. The scale of FBs can be up to 10 R<sub>E</sub> and the expansion speeds can be more than 100 km/s. The expansion of the hot ions contributes to the formation of a new shock on the trailing edge of an FB. Using MMS data, we analyze properties of the FB shock and the whistler precursor upstream of it. For the twelve FBs we analyzed, the FB shock normal has a strong X component in GSE coordinates and the quasi-parallel FB shocks are in favor of the generation of the whistler precursor. When the Mach number is larger than 3.5, the whistler precursor disappears. The wave forms are not phase standing since the angle of the wave vector and shock normal is larger than 9 degrees. They have frequencies near <em>f<sub>LH </sub></em>and right-hand polarization with respect to the ambient magnetic field (in the spacecraft frame). The properties of the whistler precursor upstream of the FB shock are similar to those at interplanetary shocks.</p>


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4563 ◽  
Author(s):  
Anna Jodko-Władzińska ◽  
Krzysztof Wildner ◽  
Tadeusz Pałko ◽  
Michał Władziński

Magnetography with superconducting quantum interference device (SQUID) sensor arrays is a well-established technique for measuring subtle magnetic fields generated by physiological phenomena in the human body. Unfortunately, the SQUID-based systems have some limitations related to the need to cool them down with liquid helium. The room-temperature alternatives for SQUIDs are optically pumped magnetometers (OPM) operating in spin exchange relaxation-free (SERF) regime, which require a very low ambient magnetic field. The most common two-layer magnetically shielded rooms (MSR) with residual magnetic field of 50 nT may not be sufficiently magnetically attenuated and additional compensation of external magnetic field is required. A cost-efficient compensation system based on square Helmholtz coils was designed and successfully used for preliminary measurements with commercially available zero-field OPM. The presented setup can reduce the static ambient magnetic field inside a magnetically shielded room, which improves the usability of OPMs by providing a proper environment for them to operate, independent of initial conditions in MSR.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. J59-J70 ◽  
Author(s):  
Nelson Ribeiro-Filho ◽  
Rodrigo Bijani ◽  
Cosme Ponte-Neto

Knowledge of the total magnetization direction of geologic sources is valuable for interpretation of magnetic anomalies. Although the magnetization direction of causative sources is assumed to be induced by the ambient magnetic field, the presence of remanence should not be neglected. An existing method of correlating total and vertical gradients of the reduced-to-the-pole (RTP) anomaly estimates the total magnetization direction well. However, due to the numerical instability of RTP transformation in the Fourier domain, an assumption should be considered for dealing with inclination values at approximately 0°. We have adopted an extension to the standard crosscorrelation method for estimating the total magnetization direction vector, computing the RTP anomaly by means of the classic equivalent layer technique for low inclination values. Additionally, an ideal number of equivalent sources within the layer is considered for reducing the computational demands. To investigate the relevant aspects of the adopted method, two simple synthetic scenarios are presented. First, a magnetic anomaly produced by a homogeneous and isolated vertical dike is considered. This test illustrates the good performance of the adopted approach, finding the true magnetization direction, even for low inclination values. In the second synthetic test, a long-wavelength component is added to the previous magnetic total-field anomaly. In this case, the method adopted here fails to estimate a reliable magnetization direction vector, showing weak performance for strong interfering magnetic anomalies. On the real data example, the application tests an isolated total-field anomaly of the Carajás Mineral Province, in northern Brazil, where the inclination of the ambient magnetic field is close to zero. The obtained results indicate weak remanence in the estimated total magnetization direction vector, which would never be reached in the standard formulation of the crosscorrelation technique.


2020 ◽  
Vol 494 (2) ◽  
pp. 1971-1987 ◽  
Author(s):  
Che-Yu Chen ◽  
Erica A Behrens ◽  
Jasmin E Washington ◽  
Laura M Fissel ◽  
Rachel K Friesen ◽  
...  

ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud.


Sign in / Sign up

Export Citation Format

Share Document