The industrial market depends intensely on wood-based composites for buildings, furniture, and construction, involving significant developments in wood glues since 80% of wood-based products use adhesives. Although biobased glues have been used for many years, notably proteins, they were replaced by synthetic ones at the beginning of the 20th century, mainly due to their better moisture resistance. Currently, most wood adhesives are based on petroleum-derived products, especially formaldehyde resins commonly used in the particleboard industry due to their high adhesive performance. However, formaldehyde has been subjected to strong regulation, and projections aim for further restrictions within wood-based panels from the European market, due to its harmful emissions. From this perspective, concerns about environmental footprint and the toxicity of these formulations have prompted researchers to re-investigate the utilization of biobased materials to formulate safer alternatives. In this regard, proteins have sparked a new and growing interest in the potential development of industrial adhesives for wood due to their advantages, such as lower toxicity, renewable sourcing, and reduced environmental footprint. This work presents the recent developments in the use of proteins to formulate new wood adhesives. Herein, it includes the historical development of wood adhesives, adhesion mechanism, and the current hotspots and recent progress of potential proteinaceous feedstock resources for adhesive preparation.