channel deposits
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 38 (2) ◽  
pp. 3-14
Author(s):  
Sudip Saha ◽  
Mrinal Kanti Roy ◽  
A.H.M. Selim Reza

Eight (8) distinct lithofacies within the fluviatile reach of the Tista River have been recognized by the detailed study of the sediments as exposed along the river bank and river bars. Genetically, the matrix-supported conglomerate (Gms), massive sand (Sm), Trough cross stratified sand (St), planar cross stratified sand (Sp), ripple laminated sand (Sr) comprise the channel deposits whereas, the ripple laminated sand (Sr), parallel laminated sand (Sh), clay with silt (Fl) and massive Clay (Fm) represent overbank fine deposits. The channel deposits were laid down under relatively high energy conditions compared to the sediments of overbank fines. The stratigraphic succession is indicative of fining upward sequence. The dominance of coarser-grained sediments at the base of the lithostratigraphic unit, especially the matrix supported conglomerate (Gms) suggests that the deposition took place in the proximal part of the Tista Fan, which might be of glacial origin. Massive clay (Fm) is the final stage of vertical aggradations in the overbanks, possibly in the floodplains, flood basins, and back swamps when the velocity of the transporting medium was virtually lean that promotes the deposition of clay materials from suspension.  The growth of cracks in the sedimentary succession is resulting from the compaction of the sediments and/or instant change in the paleoslope direction. The unimodal distribution of paleocurrent data with high mode value indicates mainly unidirectional sediment transport. The study of the lithofacies manifests that the deposits are produced by the braided river and debris flows. The modification of the depositional pattern from debris flow to overbank fines discloses the change of climatic condition in the Quaternary period.


2021 ◽  
Author(s):  
Abay Namen ◽  
Aristeidis Varis ◽  
Susanne Lindauer ◽  
Ronny Friedrich ◽  
Zhaken Taimagambetov ◽  
...  

The PALAEOSILKROAD project has been conducting field surveys in Kazakhstan to explore the regional Palaeolithic record by targeting primarily caves and rockshelters. However, the survey also discovered numerous sites that were occupied during the Holocene. In this paper, we present our preliminary findings from the Nazugum rockshelter, a new archaeological site located in south-eastern Kazakhstan (Almaty region). The stratigraphic sequence demonstrates the transition from fluvial channel deposits without artifacts to aeolian loess deposits with lithics, charcoal remnants, and fragments of animal bones. The lithics recovered from the sediment wall are dominated by bladelet technology, characteristic for Holocene assemblages. Radiocarbon dates from adjacent charcoal samples yielded an age of 2461-2347 cal. years BC attributing the human occupation to the transitional period of late Eneolithic and early Bronze Age. Our study provides new data for the use of rockshelters in Kazakhstan during the late Holocene and lays the groundwork for future salvage work in Nazugum rockshelter due to the active erosion of the archaeological record.


2021 ◽  
Vol 9 (6) ◽  
pp. 1381-1398
Author(s):  
Fumitoshi Imaizumi ◽  
Atsushi Ikeda ◽  
Kazuki Yamamoto ◽  
Okihiro Ohsaka

Abstract. Debris flows are one of the most destructive sediment transport processes in mountainous areas because of their large volume, high velocity, and kinematic energy. Debris flow activity varies over time and is affected by changes in hydrogeomorphic processes in the initiation zone. To clarify temporal changes in debris flow activities in cold regions, the rainfall threshold for the debris flow occurrence was evaluated in Osawa failure at a high elevation on Mt. Fuji, Japan. We conducted field monitoring of the ground temperature near a debris flow initiation zone to estimate the presence or absence of seasonally frozen ground during historical rainfall events. The effects of ground freezing and the accumulation of channel deposits on the rainfall threshold for debris flow occurrence were analyzed using rainfall records and annual changes in the volume of channel deposits since 1969. Statistical analyses showed that the intensity–duration threshold during frozen periods was clearly lower than that during unfrozen periods. A comparison of maximum hourly rainfall intensity and total rainfall also showed that debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. Decreases in the infiltration rate due to the formation of frozen ground likely facilitated the generation of overland flow, triggering debris flows. The results suggest that the occurrence of frozen ground and the sediment storage volume need to be monitored and estimated for better debris flow disaster mitigation in cold regions.


Geosphere ◽  
2021 ◽  
Author(s):  
Jacob A. Covault ◽  
Zoltán Sylvester ◽  
Can Ceyhan ◽  
Dallas B. Dunlap

Submarine channels are conduits for sediment delivery to continental margins, and channel deposits can be sandy components of the fill in tectonically active salt basins. Examples of salt-withdrawal basin fill commonly show successions of sandy channelized or sheet-like systems alternating with more mud-rich mass-transport complexes and hemipelagites. This alternation of depositional styles is controlled by subsidence and sediment-supply histories. Salt-basin fill comprising successions of largely uninterrupted meandering-channel deposition are less commonly recognized. This begs the questions: can sediment supply be large enough to overwhelm basin subsidence and result in a thick succession of channel deposits, and, if so, how would such a channel system evolve? Here, we use three-dimensional seismic-reflection data from a >1500 km2 region with salt-influenced topography in the Campos Basin, offshore Brazil, to evaluate the influence of salt diapirs on an Upper Cretaceous–Paleogene giant meandering submarine-channel system (channel elements >1 km wide; meander wavelengths several kilometers to >10 km). The large scale of the channels in the Campos Basin suggests that sediment discharge was large enough to sustain the meandering channel system in spite of large variability in subsidence across the region. We interpreted 22 channel centerlines to reconstruct the detailed kinematic evolution of this depositional system; this level of detail is akin to that of recent studies of meandering fluvial channels in time-lapse Landsat satellite images. The oldest channel elements are farther from salt diapirs than many of the younger ones; the centerlines of the older channel elements exhibit a correlation between curvature and migration rate, and a spatial delay between locations of peak curvature and maximum migration distance, similar to that observed in rivers. As many of the younger channel centerlines expanded toward nearby salt diapirs, their migration pattern switched to downstream translation as a result of partial confinement. Channel segments that docked against salt diapirs became less mobile, and, as a result, they do not show a correlation between curvature and migration rate. The channel migration pattern in the Campos Basin is different compared to that of a tectonically quiescent continental rise where meander evolution is unobstructed. This style of channelized basin filling is different from that of many existing examples of salt-withdrawal minibasins that are dominated by overall less-channelized deposits. This difference might be a result of the delivery of voluminous coarse sediment and high discharge of channel-forming turbidity currents to the Campos Basin from rivers draining actively uplifting coastal mountains of southeastern Brazil. Detailed kinematic analysis of such well-preserved channels can be used to reconstruct the impact of structural deformation on basin fill.


2021 ◽  
pp. 1-20
Author(s):  
Joachim Reitner ◽  
Cui Luo ◽  
Pablo Suarez-Gonzalez ◽  
Jan-Peter Duda

Abstract Fossils within early Cambrian phosphorites worldwide are often well preserved due to early diagenetic permineralization. Here, we examine the fossil record contained within phosphorites of the Lower Cambrian Pusa Formation (late Fortunian to Cambrian Stage 2) in Fontanarejo, central Spain. The sedimentology and age of these phosphorites have been controversial and are here reviewed and discussed, providing also an updated geological map. The Pusa Formation is composed of fine clastic sediments that are partly turbiditic, with channels of quartz-rich conglomerates and abundant phosphorites in the upper part of the succession. The microfacies and mineralogy of these channel deposits are studied here for the first time in detail, showing that they are mainly composed of subspherical apatite clasts, with minor mudstone intraclasts, quartzite and mica grains. Numerous sponge spicules, as well as entirely preserved hexactinellid sponges and demosponges, were collected within these phosphorites and likely represent stem groups. In addition to sponges, other fossils, such as small shelly fossils (SSF) of the mollusc Anabarella sp., were found. The phosphorites exhibit multiple evidence of intense microbial activity, including diverse fabrics (phosphatic oncoidal-like microbialites, thrombolites, stromatolites and cements) and abundant fossils of filamentous microbes that strongly resemble extant sulphur-oxidizing bacteria. Our findings strongly suggest that microbial processes mediated the rapid formation of most of the Fontanarejo apatite, probably accounting for the exceptional preservation of fragile fossils such as sponge skeletons. The apparent presence of taxonomically diverse hexactinellid and demosponge communities at the lowermost Cambrian further corroborates a Precambrian origin of the phylum Porifera.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousif M. Makeen ◽  
Xuanlong Shan ◽  
Mutari Lawal ◽  
Habeeb A. Ayinla ◽  
Siyuan Su ◽  
...  

AbstractThe Abu Gabra and Bentiu formations are widely distributed within the interior Muglad Basin. Recently, much attention has been paid to study, evaluate and characterize the Abu Gabra Formation as a proven reservoir in Muglad Basin. However, few studies have been documented on the Bentiu Formation which is the main oil/gas reservoir within the basin. Therefore, 33 core samples of the Great Moga and Keyi oilfields (NE Muglad Basin) were selected to characterize the Bentiu Formation reservoir using sedimentological and petrophysical analyses. The aim of the study is to de-risk exploration activities and improve success rate. Compositional and textural analyses revealed two main facies groups: coarse to-medium grained sandstone (braided channel deposits) and fine grained sandstone (floodplain and crevasse splay channel deposits). The coarse to-medium grained sandstone has porosity and permeability values within the range of 19.6% to 32.0% and 1825.6 mD to 8358.0 mD respectively. On the other hand, the fine grained clay-rich facies displays poor reservoir quality as indicated by porosity and permeability ranging from 1.0 to 6.0% and 2.5 to 10.0 mD respectively. A number of varied processes were identified controlling the reservoir quality of the studies samples. Porosity and permeability were enhanced by the dissolution of feldspars and micas, while presence of detrital clays, kaolinite precipitation, iron oxides precipitation, siderite, quartz overgrowths and pyrite cement played negative role on the reservoir quality. Intensity of the observed quartz overgrowth increases with burial depth. At great depths, a variability in grain contact types are recorded suggesting conditions of moderate to-high compactions. Furthermore, scanning electron microscopy revealed presence of micropores which have the tendency of affecting the fluid flow properties in the Bentiu Formation sandstone. These evidences indicate that the Bentiu Formation petroleum reservoir quality is primarily inhibited by grain size, total clay content, compaction and cementation. Thus, special attention should be paid to these inhibiting factors to reduce risk in petroleum exploration within the area.


2021 ◽  
Author(s):  
Mark Emmanuel Bishop ◽  
Wilson Lalla ◽  
Xavier Ravi Moonan

Abstract Lease Operatorship block WD-8, lies within the Forest Reserve oilfield. Forest Reserve is known for having the ENE-WSW trending, south easterly verging Forest Reserve anticline which plunges into NW-SE trending Los Bajos Fault. Regionally to the south of the Forest Reserve anticline lies the south westerly plunging Siparia syncline and to the north of the Forest Reserve anticline is the Morne L′ Enfer syncline. WD-8 is situated on the northern flank of the Forest Reserve anticline with the axis of the anticline occurring within the southern part of the block. Prior to 2018, TETL last drilled within the WD-8 block in the year 2014. Drilling within the WD-8 block pre-2018 was mainly in the southern portion of the block. The year 2018 saw TETL drill five wells in the northern part of the WD-8 block. The results from these wells prompted an evaluation within the Northern portion of the WD-8 block to determine the structure and extent of the Lower Cruse and Navet reservoirs. Field wide mapping post 2018 drills within the block highlighted the sand trend at the Cruse level is in a WSW-ENE direction and that these sands in northern WD-8 are very narrow with maximum widths ranging between 100 ft – 150 ft. Additionally, it showed that by using a smaller well spacing, wells would encounter different producing sand bodies not seen in adjacent wells. Differences in the sand character between wells in the Southern part of the block to wells in the northern part of the block at the Lower Cruse level were also seen. The Lower Cruse section in the southern part of the WD-8 block tends to have thick stacked slope channel sand deposits, while the northern part of WD-8 has relatively thin stacked slope/base of slope channel deposits. Structurally, the presence of an ENE-WSW fault which separates the southern wells from the northern wells was also revealed. Abnormal stratigraphy was also found in Northern WD-8 where the Eocene Navet formation was encountered below the Late Miocene Lower Cruse formation. Two (2) wells in the northern portion of the block found the Navet formation resistive with only one well testing this reservoir. This then presents a new under exploited target reservoir with the block. Mapping of the Navet Formation indicates that this reservoir trends in a WSW-ENE direction. This updated geological model for the WD-8 block resulted in six infill developmental wells being identified to further exploit the remaining reserves within the Lower Cruse and Navet Formations in the WD-8 block.


2021 ◽  
Author(s):  
Fumitoshi Imaizumi ◽  
Atsushi Ikeda ◽  
Kazuki Yamamoto ◽  
Okihiro Osaka

Abstract. Debris flows are one of the most destructive sediment transport processes in mountainous areas because of their large volume, high velocity, and kinematic energy. Debris flow activity varies over time and is affected by changes in hydrogeomorphic processes in the initiation zone. To clarify temporal changes of debris flow activities in cold regions, the rainfall threshold for the debris flow occurrence was evaluated in Osawa failure at a high elevation on Mt. Fuji, Japan. We conducted field monitoring of the ground temperature near a debris flow initiation zone to estimate the presence or absence of seasonally frozen ground during historical rainfall events. The effects of ground freezing and the accumulation of channel deposits on the rainfall threshold for debris flow occurrence were analyzed using rainfall records and annual changes in the volume of channel deposits since 1969. Statistical analyses showed that the intensity-duration threshold during frozen periods was clearly lower than that during unfrozen periods. A comparison of maximum hourly rainfall intensity and total rainfall also showed that debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. Decreases in the infiltration rate due to the formation of frozen ground likely facilitated the generation of overland flow, triggering debris flows. During unfrozen periods, the rainfall threshold was higher when the volume of channel deposits was larger. Increases in the water content in channel deposits caused by the infiltration of rainfall is likely important for the debris flow occurrence during unfrozen periods. The results suggest that the occurrence of frozen ground and the sediment storage volume need to be monitored and estimated for better debris flow disaster mitigation in cold regions.


Sign in / Sign up

Export Citation Format

Share Document