line model
Recently Published Documents


TOTAL DOCUMENTS

1484
(FIVE YEARS 270)

H-INDEX

50
(FIVE YEARS 6)

Author(s):  
Sara Drvaric Talian ◽  
Gregor Kapun ◽  
Joze Moskon ◽  
Robert Dominko ◽  
Miran Gaberscek

Abstract The effect of Li2S deposition on the impedance response of Li-S battery cells is investigated using a simplified cell design, systematic impedance spectroscopy measurements combined with transmission line modeling, and a complementary microscopy analysis. Glassy carbon cathodes are employed to build and validate the proposed transmission line model, which is later on employed to investigate the effect of various parameters of Li2S deposit (coverage, thickness, porosity) on cell’s impedance. Among others, the model is applied to study the effect of discharge and self-discharge. Finally, the simplified planar cathode is exchanged with a more conventional mesoporous carbon cathode to determine the effect of Li2S deposition on the impedance of a commercially viable cell design. We have found that Li2S deposit has little effect on the impedance response, owing to its porous structure. The most noticeable change stemming from the process of Li2S deposition is due to the depletion of polysulfide species concentration in the electrolyte, which decreases the chemical capacitance and increases the tail height in the low frequency region of the impedance spectra.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 282
Author(s):  
Feifei Xue ◽  
Heping Duan ◽  
Chang Xu ◽  
Xingxing Han ◽  
Yanqing Shangguan ◽  
...  

On a wind farm, the wake has an important impact on the performance of the wind turbines. For example, the wake of an upstream wind turbine affects the blade load and output power of the downstream wind turbine. In this paper, a modified actuator line model with blade tips, root loss, and an airfoil three-dimensional delayed stall was revised. This full-scale modified actuator line model with blades, nacelles, and towers, was combined with a Large Eddy Simulation, and then applied and validated based on an analysis of wind turbine wakes in wind farms. The modified actuator line model was verified using an experimental wind turbine. Subsequently, numerical simulations were conducted on two NREL 5 MW wind turbines with different staggered spacing to study the effect of the staggered spacing on the characteristics of wind turbines. The results show that the output power of the upstream turbine stabilized at 5.9 MW, and the output power of the downstream turbine increased. When the staggered spacing is R and 1.5R, both the power and thrust of the downstream turbine are severely reduced. However, the length of the peaks was significantly longer, which resulted in a long-term unstable power output. As the staggered spacing increased, the velocity in the central near wake of the downstream turbine also increased, and the recovery speed at the threshold of the wake slowed down. The modified actuator line model described herein can be used for the numerical simulation of wakes in wind farms.


Author(s):  
Milad Ghazizadeh ◽  
Firouz Badrkhani Ajaei ◽  
Anestis Dounavis

2021 ◽  
Vol 38 (12) ◽  
pp. 943-951
Author(s):  
Min Sik Chu ◽  
Hyun Ah Kim ◽  
Kyu Jong Lee ◽  
Ji Hoon Kang

Author(s):  
Baichuan Liu ◽  
Kayci Prugue ◽  
Mojdeh Nikpour ◽  
Kristopher Ward ◽  
Brian A Mazzeo ◽  
...  

Abstract Heterogeneity of MacMullin number within battery electrodes is a key metric affecting cell performance. To characterize this heterogeneity, an aperture probe was developed. This probe, coupled with a newly developed transmission-line model, allows for measurements of tortuosity, represented by the MacMullin number, on millimeter length scales. Local MacMullin number values of seven electrodes were measured, and the ionic resistance profiles of these electrodes are given through contour maps of the MacMullin number. The method is validated by comparing the average MacMullin number to the value obtained through other measurement methods. The results show significant local MacMullin number variation in such electrodes on a millimeter length scale. This method will allow battery manufacturers and researchers to better quantify sources of heterogeneity and improve electrode quality.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Xiao Zhu ◽  
Ge Ou

The accuracy of transmission tower-line system simulation is highly impacted by the transmission line model and its coupling with the tower. Owing to the high geometry nonlinearity of the transmission line and the complexity of the wind loading, such analysis is often conducted in the commercial software. In most commercial software packages, nonlinear truss element is used for cable modeling, whereas the initial strain condition of the nonlinear truss under gravity loading is not directly available. Elastic catenary element establishes an analytical formulation for cable structure under distributed loading; however, the nonlinear iteration to reach convergence can be computational expensive. To derive an optimal transmission tower-line model solution with high fidelity and computational efficiency, an open-source three-dimensional model is developed. Nonlinear truss element and elastic catenary element are considered in the model development. The results of the study imply that both elements are suitable for the transmission line model; nevertheless, the initial strain in nonlinear truss element largely impacts the model accuracy and should be calibrated from the elastic catenary model. To cross-validate the developed models on the coupled transmission tower and line, a one-span eight-line system is modeled with different elements and compared with several state-of-the-art commercial packages. The results indicate that the displacement time-history root-mean-square error (RMSE) of the open-source transmission tower-line model is less than 1 % and with a 66 % computational time reduction compared with the ANSYS model. The application of the open-source package transmission tower-line model on extreme wind speed considering the aerodynamic damping is further implemented.


Sign in / Sign up

Export Citation Format

Share Document