gurney flap
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 54)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Siyang Hao ◽  
John Cooney ◽  
Neal Fine ◽  
Kenny S. Breuer

2021 ◽  
Vol 2 (4) ◽  
pp. 293-305
Author(s):  
Mohammad Mahdi Mahzoon ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift. Doi: 10.28991/HIJ-2021-02-04-03 Full Text: PDF


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Milad Mousavi ◽  
Mehran Masdari ◽  
Mojtaba Tahani

Purpose Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind turbines (VAWT) that are equipped with diverse gurney flaps. This study could play a crucial role in the design of the VAWT in the future. Design/methodology/approach In this paper, the two-dimensional computational fluid dynamics simulation is used. The second-order finite volume method is used for the discretization of the governing equations. Findings The results show that the gurney flap enhances the power coefficient at the low range of tip speed ratio (TSR). When an angled and standard gurney flap case has the same aerodynamic performance, an angled gurney flap case has a lower hinge moment on the junction of airfoil and gurney flap which shows the structural excellence of this case. In all gurney flap cases, the power coefficient increases by an average of 20% at the TSR range of 0.6 to 1.8. The gurney flap cases do not perform well at the high TSR range and the results show a lower amount of power coefficient compare to the clean airfoil. Originality/value The angled gurney flap which has the structural advantage and is deployed to the pressure side of the airfoil improves the efficiency of VAWT at the low and medium range of TSR. This study recommends using a controllable gurney flap which could be deployed at a certain amount of TSR.


2021 ◽  
Vol 13 (8) ◽  
pp. 4284
Author(s):  
Yosra Chakroun ◽  
Galih Bangga

In the present studies, the effects of Gurney flaps on aerodynamic characteristics of a static airfoil and a rotating vertical axis wind turbine are investigated by means of numerical approaches. First, mesh and time step studies are conducted and the results are validated with experimental data in good agreement. The numerical solutions demonstrate that the usage of Gurney flap increases the airfoil lift coefficient CL with a slight increase in drag coefficient CD. Furthermore, mounting a Gurney flap at the trailing edge of the blade increases the power production of the turbine considerably. Increasing the Gurney flap height further increases the power production. The best performance found is obtained for the maximum height used in this study at 6% relative to the chord. This is in contrast to the static airfoil case, which shows no further improvement for a flap height greater than 0.5%c. Increasing the angle of the flap decreases the power production of the turbine slightly but the load fluctuations could be reduced for the small value of the flap height. The present paper demonstrates that the Gurney flap height for high solidity turbines is allowed to be larger than the classical limit of around 2% for lower solidity turbines.


Author(s):  
Subah Mubassira ◽  
Farhana Islam Muna ◽  
Mohammad Ilias Inam

This paper presents a two-dimensional Computational Fluid Dynamics (CFD) analysis on the effect of gurney flap on a NACA 4312 airfoil in a subsonic flow. These numerical simulations were conducted for flap heights 1.5%, 1.75%, 2% and 3% of chord length at fixed Reynold Number, Re (5×105) for different angle of attack (0o ~16o). ANSYS Fluent commercial software was used to conduct these simulations. The flow was considered as incompressible and K-omega Shear Stress Transport (SST) model was selected. The numerical results demonstrate that lift coefficient increase up to around 12o AoA (angle of attack) for NACA 4312 with and without gurney flap. For every AoA lift coefficient and drag coefficient presented proportionate behavior with flap height. However, lift co-efficient was decreased after around  angle of attack due to flow separation. Maximum lift to drag ratio was found at around 4o AoA for every flap length and airfoil with flap of 1.5%C (chord length) had shown the most optimized aerodynamic performance through the analysis. This study concluded that airfoil with gurney flap displayed enhanced aerodynamic performance than the airfoil without gurney flap due to the delay in flow separation.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2059
Author(s):  
Mattia Basso ◽  
Carlo Cravero ◽  
Davide Marsano

The design of a racing car needs several aerodynamic design steps in order to achieve high performance. Each component has an aerodynamic interaction with the others and high performance requires a good match between them. The front wing is undoubtedly one of the main components to determine car performance with a strong interaction with the downstream components. The Gurney Flap (GF) is a small appendix perpendicular to the pressure side of the front wing at the trailing edge that can dramatically improve the front wing performance. In the literature, the performance of a GF on a single profile is well documented, while in this paper the GF mounted on the front wing of a racing car has been investigated and the interactions through the 3D flow structures are discussed. The global drag and downforce performance on the main components of the vehicle have been examined by comparing the cases with and without a GF. The GF increases the downforce by about 24% compared to a limited increase in the drag force. A fluid dynamic analysis has been carried out to understand the physical mechanisms of the flow interaction induced to the other components. The GF, in fact, enhances the ground effect, by redistributing the flow that interacts differently with the other components i.e., the wheel zone.


Sign in / Sign up

Export Citation Format

Share Document