ground effect
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 191)

H-INDEX

33
(FIVE YEARS 5)

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Charalampos Papadopoulos ◽  
Dimitrios Mitridis ◽  
Kyros Yakinthos

In this study, the conceptual design of an unmanned ground effect vehicle (UGEV), based on in-house analytical tools and CFD calculations, followed by flow control studies, is presented. Ground effect vehicles can operate, in a more efficient way, over calm closed seas, taking advantage of the aerodynamic interaction between the ground and the vehicle. The proposed UGEV features a useful payload capacity of 300 kg and a maximum range of 300 km cruising at 100 kt. Regarding the aerodynamic layout, a platform which combines the basic geometry characteristics of the blended wing body (BWB), and box wing (BXW) configurations is introduced. This hybrid layout aims to incorporate the most promising features from both configurations, while it enables the UGEV to operate under adverse flight conditions of the atmospheric boundary layer of the earth. In order to enhance the performance characteristics of the platform, both passive and active flow control techniques are studied and incorporated into the conceptual design phase of the vehicle. For the passive flow control techniques, the adaptation of tubercles and wing fences is evaluated. Regarding the active flow control techniques, a wide range of morphing technologies is investigated based on performance and integration criteria. Finally, stability studies are conducted for the proposed platform.


2022 ◽  
Author(s):  
Pedro J. Boschetti ◽  
Carlos Neves ◽  
Pedro J. González Ramirez

2022 ◽  
Author(s):  
Carlos Neves ◽  
Pedro J. Boschetti ◽  
Gabriel Leal

2022 ◽  
Author(s):  
YiZhuang Garrard ◽  
Wenlong Zhang ◽  
Daisaku Inoyama ◽  
Tom G. Stoumbos

Author(s):  
Aditi Deekshita Pallay ◽  
Abdul Wahab ◽  
Akhil Shesham ◽  
Y D Dwivedi

Ground effect plays a vital role in modulating the flow behavior over any streamlined body. The most widely used wing-in ground effect (WIG) aircrafts and seaplanes utilize this phenomenon in order to enhance the aerodynamic performance during the landing and take-off phases of flight. This paper investigates the aerodynamics of ground effect on a NACA 4412 rectangular wing without end plates. The experiment was conducted in a low-speed wind tunnel at Re=2×105 for the ground clearance of 1 and 0.5 of the chord, measured from the maximum thickness position on the airfoil. The pressure distribution over the chord length was recorded for α=3° and 6° to verify the effect of ground clearance during takeoffs. The results have shown to be in good accordance with the literature, as the coefficient of lift augmented with increase in ground proximity and the induced drag was minimized.


Author(s):  
Kexin Guo ◽  
Wenyu Zhang ◽  
Yukai Zhu ◽  
Jindou Jia ◽  
Xiang Yu ◽  
...  

2021 ◽  
Vol 153 (A3) ◽  
Author(s):  
K I Matveev

The motion stability is the most important problem of high-speed marine vehicles that utilize aerodynamic support. A simplified analysis and calculations of longitudinal static stability of several basic platforms moving above water are carried out in this study. The analysis is based on the extreme ground effect theory and the assumption of hydrostatic deformations of the water surface. Effects of the underlying surface type, Froude number, and several geometrical parameters on main aerodynamic characteristics, including the static stability margin, are presented. If the underlying surface is water instead of a rigid plane, the static stability worsens for platforms with flat or S-shaped lower surfaces, but it slightly improves for a horizontal platform with a flap. The static stability margin remains positive for S-shaped profiles at sufficiently low Froude numbers, while it is negative for other configurations.


Sign in / Sign up

Export Citation Format

Share Document