generic projection
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2016 ◽  
Vol 17 (2) ◽  
pp. 419-424
Author(s):  
Ziv Ran

We consider a general fibre of given length in a generic projection of a variety. Under the assumption that the fibre is of local embedding dimension 2 or less, an assumption which can be checked in many cases, we prove that the fibre is reduced and its image on the projected variety is an ordinary multiple point.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250019 ◽  
Author(s):  
M. JABŁONOWSKI

The singularity set of a generic standard projection to the three space of a closed surface linked in four space, consists of at most three types: double points, triple points or branch points. We say that this generic projection image is p-diagram if it does not contain any triple point. Two p-diagrams of equivalent surface links are called p-equivalent if there exist a finite sequence of local moves, such that each of them is one of the four moves taken from the seven on the well known Roseman list, that connects only p-diagrams. It is natural to ask that whether any of two p-diagrams of equivalent surface links always p-equivalent? We introduce an invariant of p-equivalent diagrams and an example of linked surfaces that answers our question negatively.


2011 ◽  
Vol 22 (05) ◽  
pp. 619-653 ◽  
Author(s):  
MICHAEL FRIEDMAN ◽  
MAXIM LEYENSON ◽  
EUGENII SHUSTIN

We study ramified covers of the projective plane ℙ2. Given a smooth surface S in ℙN and a generic enough projection ℙN → ℙ2, we get a cover π: S → ℙ2, which is ramified over a plane curve B. The curve B is usually singular, but is classically known to have only cusps and nodes as singularities for a generic projection. The main question that arises is with respect to the geometry of branch curves; i.e. how can one distinguish a branch curve from a non-branch curve with the same numerical invariants? For example, a plane sextic with six cusps is known to be a branch curve of a generic projection iff its six cusps lie on a conic curve, i.e. form a special 0-cycle on the plane. The classical work of Beniamino Segre gives a complete answer to the second question in the case when S is a smooth surface in ℙ3. We give an interpretation of the work of Segre in terms of relation between Picard and Chow groups of 0-cycles on a singular plane curve B. In addition, the appendix written by E. Shustin shows the existence of new Zariski pairs.


2008 ◽  
Vol 18 (08) ◽  
pp. 1259-1282 ◽  
Author(s):  
MEIRAV AMRAM ◽  
MINA TEICHER ◽  
UZI VISHNE

This is the final paper in a series of four, concerning the surface 𝕋 × 𝕋 embedded in ℂℙ8, where 𝕋 is the one-dimensional torus. In this paper we compute the fundamental group of the Galois cover of the surface with respect to a generic projection onto ℂℙ2, and show that it is nilpotent of class 3. This is the first time such a group is presented as the fundamental group of a Galois cover of a surface.


2007 ◽  
Vol 17 (03) ◽  
pp. 507-525 ◽  
Author(s):  
MEIRAV AMRAM ◽  
MINA TEICHER ◽  
UZI VISHNE

This paper is the second in a series of papers concerning Hirzebruch surfaces. In the first paper in this series, the fundamental group of Galois covers of Hirzebruch surfaces Fk(a, b), where a, b are relatively prime, was shown to be trivial. For the general case, the conjecture stated that the fundamental group is [Formula: see text] where c = gcd (a, b) and n = 2ab + kb2. In this paper, we degenerate the Hirzebruch surface F1(2, 2), compute the braid monodromy factorization of the branch curve in ℂ2, and verify that, in this case, the conjecture holds: the fundamental group of the Galois cover of F1(2, 2) with respect to a generic projection is isomorphic to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document