The production and repair of such high-tech and important products as helicopters‟ reduction trains is impossible without comprehensive testing of these products, starting with the manufacture of their individual parts and assemblies and ending with the delivery of reduction trains to the customer.
Various means for testing of gear wheels‟ rims and gear trains of helicopter‟s reduction trains, which have found application in testing equipment, are presented. Devices, testers, stands and machines for various tests are considered in order to control the characteristics of gear trains of aviation reduction trains after certain periods of their operation and repair, aimed at achieving better performance during further operation.
The considered traditional metrological means of control of gear rims, gear measuring machines and complexes, some stands and machines for testing of reduction trains, pulse controllers and roll machines give an idea of various methods and means of control of gear wheels and gear trains of helicopters‟ reduction trains.
The main method of experimental research of gear trains of reducers is stand tests both on movable gear wheels and on roll machines.
Until recently, the most common method for monitoring and diagnosing gear trains has been vibrography, however, existing techniques do not give an accurate picture of the train condition, especially the contact surface of the teeth. During the operation of the gear train as a part of the helicopter‟s reduction train, signals from other sources (rotors, blades, shafts, bearings) are superimposed on the vibration signal generated by the gear train which significantly complicates the extraction and processing of the desired vibration signal.
One of the most effective methods for monitoring and diagnosing the technical condition of kinematic chains of different complexity, which includes gear trains of helicopters„ reducers is kinematometry. The disadvantage of traditional kinematometry is the need to use high-precision sensors for the frequency and phase of the rotor rotation.
Control of vibration from the early 1990s to the present time is the most advanced control, the means and methods of which are well developed in the aviation industry.