polya urn
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2909
Author(s):  
Giacomo Aletti ◽  
Irene Crimaldi

In recent papers the authors introduce, study and apply a variant of the Eggenberger–Pólya urn, called the “rescaled” Pólya urn, which, for a suitable choice of the model parameters, exhibits a reinforcement mechanism mainly based on the last observations, a random persistent fluctuation of the predictive mean and the almost sure convergence of the empirical mean to a deterministic limit. In this work, motivated by some empirical evidence, we show that the multidimensional Wright–Fisher diffusion with mutation can be obtained as a suitable limit of the predictive means associated to a family of rescaled Pólya urns.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2845
Author(s):  
Sandra Fortini ◽  
Sonia Petrone ◽  
Hristo Sariev

Measure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure that serve as an extension of the generalized k-color Pólya urn model towards a continuum of possible colors. We prove that, for any MVPP (μn)n≥0 on a Polish space X, the normalized sequence (μn/μn(X))n≥0 agrees with the marginal predictive distributions of some random process (Xn)n≥1. Moreover, μn=μn−1+RXn, n≥1, where x↦Rx is a random transition kernel on X; thus, if μn−1 represents the contents of an urn, then Xn denotes the color of the ball drawn with distribution μn−1/μn−1(X) and RXn—the subsequent reinforcement. In the case RXn=WnδXn, for some non-negative random weights W1,W2,…, the process (Xn)n≥1 is better understood as a randomly reinforced extension of Blackwell and MacQueen’s Pólya sequence. We study the asymptotic properties of the predictive distributions and the empirical frequencies of (Xn)n≥1 under different assumptions on the weights. We also investigate a generalization of the above models via a randomization of the law of the reinforcement.


Author(s):  
Hosam Mahmoud

Abstract By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is explicit in terms of an eigenvector of the scheme.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249634
Author(s):  
Giacomo Aletti ◽  
Irene Crimaldi ◽  
Fabio Saracco

Twitter is among the most used online platforms for the political communications, due to the concision of its messages (which is particularly suitable for political slogans) and the quick diffusion of messages. Especially when the argument stimulate the emotionality of users, the content on Twitter is shared with extreme speed and thus studying the tweet sentiment if of utmost importance to predict the evolution of the discussions and the register of the relative narratives. In this article, we present a model able to reproduce the dynamics of the sentiments of tweets related to specific topics and periods and to provide a prediction of the sentiment of the future posts based on the observed past. The model is a recent variant of the Pólya urn, introduced and studied in Aletti and Crimaldi (2019, 2020), which is characterized by a “local” reinforcement, i.e. a reinforcement mechanism mainly based on the most recent observations, and by a random persistent fluctuation of the predictive mean. In particular, this latter feature is capable of capturing the trend fluctuations in the sentiment curve. While the proposed model is extremely general and may be also employed in other contexts, it has been tested on several Twitter data sets and demonstrated greater performances compared to the standard Pólya urn model. Moreover, the different performances on different data sets highlight different emotional sensitivities respect to a public event.


2021 ◽  
Vol 58 (1) ◽  
pp. 274-286
Author(s):  
Konstantin Borovkov

AbstractMotivated by mathematical tissue growth modelling, we consider the problem of approximating the dynamics of multicolor Pólya urn processes that start with large numbers of balls of different colors and run for a long time. Using strong approximation theorems for empirical and quantile processes, we establish Gaussian process approximations for the Pólya urn processes. The approximating processes are sums of a multivariate Brownian motion process and an independent linear drift with a random Gaussian coefficient. The dominating term between the two depends on the ratio of the number of time steps n to the initial number of balls N in the urn. We also establish an upper bound of the form $c(n^{-1/2}+N^{-1/2})$ for the maximum deviation over the class of convex Borel sets of the step-n urn composition distribution from the approximating normal law.


Sign in / Sign up

Export Citation Format

Share Document