cold hardiness
Recently Published Documents


TOTAL DOCUMENTS

1478
(FIVE YEARS 123)

H-INDEX

55
(FIVE YEARS 4)

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 126-136
Author(s):  
Heather Kalaman ◽  
Sandra B. Wilson ◽  
Rachel E. Mallinger ◽  
Gary W. Knox ◽  
Edzard van Santen

Diverse floral resources impart immense value for pollinating insects of all types. With increasing popularity and demand for modern ornamental hybrids, cultivation by breeders has led to selection for a suite of traits such as extended bloom periods and novel colors and forms deemed attractive to the human eye. Largely understudied is pollinator preference for these new cultivars, as compared with their native congeners. To address this gap in understanding, 10 species of popular herbaceous flowering plants, commonly labeled as pollinator-friendly, were evaluated at two sites in Florida [U.S. Department of Agriculture (USDA) cold hardiness zones 8b and 9a] and across three seasons for their floral abundance and overall attractiveness to different groups of pollinating insects. Each genus, apart from pentas, encompassed a native and nonnative species. Native species included blanket flower (Gaillardia pulchella), lanceleaf coreopsis (Coreopsis lanceolata), pineland lantana (Lantana depressa), and scarlet sage (Salvia coccinea). Nonnative species included Barbican™ yellow-red ring blanket flower (G. aristata ‘Gaiz005’), Bloomify™ rose lantana (L. camara ‘UF-1011-2’), mysty salvia (S. longispicata ×farinacea ‘Balsalmysty’), Lucky Star® dark red pentas (Pentas lanceolata ‘PAS1231189’), ruby glow pentas (P. lanceolata ‘Ruby glow’) and Uptick™ Gold & Bronze coreopsis (Coreopsis × ‘Baluptgonz’). Flower-visiting insects were recorded during five-minute intervals in the morning and categorized into the following morpho-groups: honey bees, large-bodied bees (bumble and carpenter bees), other bees (small to medium-bodied native bees), butterflies/moths, and wasps. Floral abundance and pollinator visitation varied widely by season, location, and species. Of the plant species evaluated, nonnative plants produced nearly twice as many flowers as native plants. About 22,000 floral visitations were observed. The majority of visits were by native, small to medium-bodied bees (55.28%), followed by butterflies and moths (15.4%), large-bodied native bees (11.8%), wasps (10.0%), and honey bees (7.6%). Among plant genera, both native and nonnative coreopsis and blanket flower were most attractive to native, small to medium-bodied bees (e.g., sweat bees, leafcutter bees) with the greatest number of visitations occurring during the early and midmonths of the study (May–August). Across the study, butterflies and moths visited lantana more frequently than all other ornamentals evaluated, whereas pentas were most attractive to wasps. Large-bodied bees visited plants most frequently in May and June, primarily foraging from both native and nonnative salvia. While results from this study showed nominal differences between native and nonnative species in their ability to attract the studied pollinator groups, care should be taken to making similar assessments of other modern plant types.


2021 ◽  
Author(s):  
Ziyi Zhao ◽  
Baozhong Hu ◽  
Xu Feng ◽  
Fenglan li ◽  
Fumeng He ◽  
...  

Abstract BackgroundLow temperature is an important factor that influences the ability of winter wheat to safely overwinter. Excessive low temperatures restrict the regrowth of winter wheat, thus decreasing agricultural output. Non-enzymatic expansins, which are related to plant growth, have been reported to respond to drought, salinity, and low temperature stress. We obtained an expansin gene, TaEXPA9, that is induced by low temperature from a transcriptome analysis of ‘Dongnong winter wheat no. 2’—a winter wheat with high cold hardiness—but the expression pattern and function of this gene were unknown. We therefore analyzed the expression patterns of TaEXPA9-A/B/D in D2 in response to different abiotic stresses and exogenous phytohormone treatments in different organs. The entire length of TaEXPA9-A/B/D was obtained, and green fluorescent labeling was used for subcellular localization analysis of TaEXPA9-A/B/D on onion epidermis. The 35S::TaEXPA9-A/B/D expression vector was constructed, and an overexpression transgenic Arabidopsis thaliana line was obtained to examine the effects of the homologs of this expansin on plant growth and low temperature stress resistance. ResultsThe results showed that TaEXPA9-A/B/D transcription significantly increased at 4°C low temperature stress, its expression level was higher in the roots, and TaEXPA9-A/B/D was localized to the cell wall. The roots were well-developed in the overexpression A. thaliana, and the growth-related markers and setting rate were better than in the wild-type. Recovery was stronger in the overexpression plants after frost stress. At 4°C low temperature stress, the antioxidant enzyme activity and osmoregulatory substance content in the TaEXPA9-A/B/D-overexpressing A. thaliana plants were significantly higher than in the wild-type plants, and the degree of membrane lipid peroxidation was lower. ConclusionsIn summary, TaEXPA9-A/B/D participates in the low-temperature stress response and may increase the scavenging of reactive oxygen species caused by low temperature stress through the protective enzyme system. Additionally, TaEXPA9-A/B/D can increase the levels of small molecular organic substances to resist osmotic stress caused by low temperature.


2021 ◽  
Vol 290 ◽  
pp. 110520
Author(s):  
László Szalay ◽  
József Bakos ◽  
Ágnes Tósaki ◽  
Belay Teweldemedhin Keleta ◽  
Veronika Froemel-Hajnal ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Željko D. Popović ◽  
Vítězslav Maier ◽  
Miloš Avramov ◽  
Iva Uzelac ◽  
Snežana Gošić-Dondo ◽  
...  

The European corn borer Ostrinia nubilalis is a pest species, whose fifth instar larvae gradually develop cold hardiness during diapause. The physiological changes underlying diapause progression and cold hardiness development are still insufficiently understood in insects. Here, we follow a complex of changes related to energy metabolism during cold acclimation (5°C) of diapausing larvae and compare this to warm-acclimated (22°C) and non-diapause controls. Capillary electrophoresis of nucleotides and coenzymes has shown that in gradually cold-acclimated groups concentrations of ATP/ADP and, consequently, energy charge slowly decrease during diapause, while the concentration of AMP increases, especially in the first months of diapause. Also, the activity of cytochrome c oxidase (COX), as well as the concentrations of NAD+ and GMP, decline in cold-acclimated groups, until the latter part of diapause, when they recover. Relative expression of NADH dehydrogenase (nd1), coenzyme Q-cytochrome c reductase (uqcr), COX, ATP synthase (atp), ADP/ATP translocase (ant), and prohibitin 2 (phb2) is supressed in cold-acclimated larvae during the first months of diapause and gradually increases toward the termination of diapause. Contrary to this, NADP+ and UMP levels significantly increased in the first few months of diapause, after gradual cold acclimation, which is in connection with the biosynthesis of cryoprotective molecules, as well as regeneration of small antioxidants. Our findings evidence the existence of a cold-induced energy-saving program that facilitates long-term maintenance of larval diapause, as well as gradual development of cold hardiness. In contrast, warm acclimation induced faster depletion of ATP, ADP, UMP, NAD+, and NADP+, as well as higher activity of COX and generally higher expression of all energy-related genes in comparison to cold-acclimated larvae. Moreover, such unusually high metabolic activity, driven by high temperatures, lead to premature mortality in the warm-acclimated group after 2 months of diapause. Thus, our findings strongly support the importance of low temperature exposure in early diapause for gradual cold hardiness acquisition, successful maintenance of the resting state and return to active development. Moreover, they demonstrate potentially adverse effects of global climate changes and subsequent increase in winter temperatures on cold-adapted terrestrial organisms in temperate and subpolar regions.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Amit Bhasin ◽  
Joan Davenport ◽  
Scott Lukas ◽  
Qianwen Lu ◽  
Gwen Hoheisel ◽  
...  

Bloom to fruit maturity is a period of rapid growth and nitrogen (N) uptake in northern highbush blueberry (Vaccinium corymbosum L.). Sufficient plant-available N is critical during this time, and growers often accomplish this through fertilizer applications from bloom through fruit development. For organic production in northern climates like Washington State, postharvest applications of N fertilizer are not recommended for northern highbush blueberry because they may stimulate excessive vegetative growth, reduce floral bud set, and increase the risk of winter injury through delayed acclimation. However, early fruiting cultivars with the potential for an extended growing season after harvest may benefit from postharvest N applications because the additional N may promote shoot and root growth that could support fruit production in future years while still allowing plants to form floral buds and acclimate to winter temperatures. The objective of this study was to evaluate the potential impacts of postharvest organic N fertilizer applications on ‘Duke’, an early fruiting northern highbush blueberry cultivar. Specific objectives were to determine the effects of postharvest organic N fertilizer application on plant growth, yield, floral bud set, fruit quality, cold hardiness, tissue macronutrient concentrations, and select soil properties. Four treatments varying in the timing of N application were evaluated in a commercial ‘Duke’ field in eastern Washington using a single fertilizer rate of 130 kg⋅ha−1 N from 2018 to 2020. The organic fertilizer N source was a liquid fertilizer derived from digested plant materials. The experimental design was a randomized complete block design with four replications and treatments included the following: control (100% of N applied preharvest); 80/20 (80% preharvest, 20% postharvest); 70/30 (70% preharvest, 30% postharvest); and 60/40 (60% preharvest, 40% postharvest). Although the year influenced measured variables, including yield, floral bud set, fruit quality, tissue nutrients, and soil properties, few treatment effects were observed across the 3-year study. Cold hardiness was only impacted once (8 Feb. 2020), and floral buds were overall hardy to extreme minimum winter temperatures for the region. This project showed that applying postharvest organic N as a liquid fertilizer had no negative consequences on productivity metrics for an early fruiting blueberry cultivar grown in a region with an extended growing season, thus providing growers with more flexibility when timing their fertilizer applications. Results may differ for other fertilizer sources, and further monitoring of soil NO3-N accumulation should be conducted to gain a better understanding of its dynamics and the potential for risks.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1117
Author(s):  
Zhilei Wang ◽  
Ying Wang ◽  
Dong Wu ◽  
Miao Hui ◽  
Xing Han ◽  
...  

With the extreme changes of the global climate, winter freezing injury has become an important limiting factor for the development of the global grape industry. Therefore, there is a significant need for the screening of cold-resistant wine grape germplasms and cold regionalization for cold-resistant breeding and the development of grapevine cultivation in cold regions. In this study, the low-temperature half-lethal temperature (LT50) values were determined for the annual dormant branches of 124 wine grape germplasms (V. vinifera) to evaluate their cold resistance. The LT50 values of the 124 tested germplasms ranged from −22.01 °C to −13.18 °C, with six cold-resistant germplasms below −20 °C. Based on the LT50 values, the 124 germplasms were clustered into four types, with cold resistance from strong to weak in the order of type Ⅱ > type Ⅰ > type Ⅳ > type Ⅲ, corresponding to the four cold hardiness zones. Zones 1, 2, 3, and 4 included 6, 22, 68, and 28 germplasms, respectively, with decreasing cold resistance. The number of germplasms in different hardiness zones followed a normal distribution, with the most in zone 3. In Type Ⅱ, the fruit skin color of germplasms was positively correlated with cold hardiness, while the temperature of origin was negatively correlated with cold hardiness. The average LT50 of germplasms in different origin regions ranged from −17.44 °C to −16.26 °C, with differences among some regions. The cold regionalization analysis resulted in the distribution of 124 germplasms in four temperature regions in China with six germplasms in region A (−22 °C ≤ LT50 ≤ −20 °C), 30 germplasms in region B (−20°C ≤ LT50 ≤ −18°C), 71 germplasms in region C (−18 °C ≤ LT50 ≤ −15 °C), and 17 germplasms in region D (−15 °C ≤ LT50 ≤ −13 °C). Strong cold-resistant wine grape germplasms (V. vinifera) were identified, and these could be used as parental material for cold-resistant breeding. In some areas in China, soil-burial over-wintering strategies are used, but our results suggest that some wine grapes could be cultivated without requiring winter burial during overwintering. The results of this study should provide guidance for the selection of promising strains for cold-resistant breeding for expanded cultivation of improved varieties for wine grape production in China.


Author(s):  
John A. Cline ◽  
Amanda Beneff ◽  
A. Michelle Edwards

There is increasing interest in growing European origin apple cultivars for the production of hard cider in Canada; however, little is known about their winter hardiness. Eleven promising cider cultivars were evaluated for cold hardiness over two consecutive winters and compared with the winter tender cultivar 'Golden Delicious’. Sections of the current season's dormant shoots were frozen in a series of test temperatures ranging from -20°C to -40°C in a programmable freezer. Xylem tissue browning ratings were used to assess injury after thawing. The temperature of incipient damage (TID), the warmest temperature at which 1-yr-old shoot segments begin to show injury, was obtained from tissue browning curves using non-linear regression. TID varied significantly among cultivars and between sampling years. Overall, the cultivars could be classified according to relative winter hardiness as follows: Ashmead’s Kernel, Bramley’s Seedling (very tender) < Calville Blanc d’Hiver, Porter’s Perfection, Bulmer’s Norman (intermediate) < Crimson Crisp, GoldRush, Golden Delicious, Enterprise, Yarlington Mill, Enterprise (hardy) < Golden Russet (hardy). These data indicate nearly a 10oC range in winter hardiness amongst the 11 cultivars studied, depending on the sampling date. Ashmead’s Kernel and Bramley’s Seedling appear to be particularly winter tender, whereas Bulmer's Norman, Porter's Perfection, and Calville Blanc d'Hiver demonstrated less hardiness during three of the four sampling dates. Based upon these findings, it would be prudent to consult long-term climate normals and consider the frequency of extreme weather events for potential susceptibility to winter injury, particularly prior to establishing more injury-prone cultivars.


2021 ◽  
pp. 215-226
Author(s):  
Mikael Johansson ◽  
Naoki Takata ◽  
Cristian Ibáñez ◽  
Maria E. Eriksson
Keyword(s):  

2021 ◽  
pp. 227-242
Author(s):  
Mikael Johansson ◽  
Cristian Ibáñez ◽  
Naoki Takata ◽  
Maria E. Eriksson

Sign in / Sign up

Export Citation Format

Share Document