Under the influence of stress and membrane damage, cells undergo immunogenic cell death (ICD), which involves the release of damage associated molecular patterns (DAMPs), natural adjuvants for enhancing an immune response. In the presence of an antigen, released DAMPs can determine the type and magnitude of the immune response, and therefore the longevity and efficacy of an antigen-specific immunity. In the last decade, the immune response effect of ICD has been shown, yet there is no tool that can induce controlled ICD with predictable results, regardless of the cell type. We designed a peptide-based tool, called [II], for controlled damage to cell membrane to induce ICD and DAMPs release. Herein we describe a series of experiments that determine that the mechanism of action of [II] includes a caspase-dependent ICD and subsequent release of immune stimulating DAMPs, on various cell types. Moreover, we tested the hypothesis that controlled DAMP release via [II] in vivo was associated with enhancement of antigen-specific adaptive immunity with influenza hemagglutinin (HA) subunit vaccine. HA and [II] showed significantly higher HA specific IgG1 and IgG2a antibodies, compared to HA-only immunized mice, while the peptide itself did not elicit antibodies. In this paper, we demonstrate the first peptide-aggregation induced immunogenic rupture (PAIIR) approach as vaccine adjuvants for increasing both humoral and cellular immunity. In consideration of its ability to enhance IgG2a responses that are associated with heterosubtypic influenza virus protection, PAIIR is a promising adjuvant to promote universal protection upon influenza HA vaccination.