scholarly journals Applications of Chitosan-Alginate-Based Nanoparticles—An Up-to-Date Review

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 186
Author(s):  
Adelina-Gabriela Niculescu ◽  
Alexandru Mihai Grumezescu

Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.

2020 ◽  
Vol 9 (10) ◽  
pp. e6059108996
Author(s):  
Joyce Fagundes Gomes Motta ◽  
Regiane Ribeiro-Santos ◽  
Maria Clara Guimarães ◽  
Lívia de Aquino Garcia Moura ◽  
Letícia Vitorazi ◽  
...  

Growing demand for safe foods coupled with the intent to reduce food waste, seeing as much of it is lost through contamination by spoilage microorganisms, leads to research on antimicrobial agents such as LAE (Nα-lauroyl-L-arginine ethyl ester monohydrochloride). This compound has great antimicrobial potential against a range of microorganisms and, therefore, its use may be of extreme importance for the food industry in the search for antimicrobial agents with a broad spectrum of action. Thus, the objective of this article is to review the research involving LAE, when studied in vitro, in vivo and in the incorporation in different packaging in order to be released in a controlled manner for food products. In conclusion, despite the fact that it has a strong antimicrobial activity, it is still little known and is not accepted in all countries, including Brazil. With greater insight into this antimicrobial agent, more countries could use it, supporting worldwide in food preservation.


Author(s):  
Lucie Depeigne ◽  
Emilija Zdraveva

One of the largest fields of application of electrospun materials is the biomedical field, including development of scaffolds for tissue engineering, drug delivery and wound healing. Electrospinning appears as a promising technique in terms of scaffolds composition and architecture, which is the main aspect of this review paper, with a special attention to natural polymers including collagen, fibrinogen, silk fibroin, chitosan, chitin etc. Thanks to the adaptability of the electrospinning process, versatile hybrid, custom tailored structure scaffolds have been reported. The same is achieved due to the vast biomaterials’ processability as well as modifications of the basic electrospinning set-up and its combination with other techniques, simultaneously or by post-processing.


2020 ◽  
Author(s):  
Elizabeth A. Grego ◽  
Alaric C. Siddoway ◽  
Metin Uz ◽  
Luman Liu ◽  
John C. Christiansen ◽  
...  

2017 ◽  
Vol 2 (9) ◽  
Author(s):  
Monissa Paderes ◽  
Deepak Ahirwal ◽  
Susana Fernández Prieto

AbstractPolymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.


2021 ◽  
Vol 22 (19) ◽  
pp. 10337
Author(s):  
Anna Paradowska-Stolarz ◽  
Mieszko Wieckiewicz ◽  
Artur Owczarek ◽  
Joanna Wezgowiec

The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.


2018 ◽  
Vol 20 (4) ◽  
pp. 6-12
Author(s):  
Agnieszka Wróblewska ◽  
Mariusz Malko ◽  
Marika Walasek

Abstract This work presents the studies on the epoxidation of limonene to 1,2-epoxylimonene with hydrogen peroxide and over the titanium-silicate Ti-SBA-15 catalyst. The main object of the research was a solvent effect on the epoxidation process. The influence of solvents, such as: methanol, toluene, propan-2-ol (isopropyl alcohol), acetonitrile and ethanol has been studied. Furthermore, the influence of temperature in the range of 0-120°C and the reaction time in the range of 0.25-48 h have been investigated. Gas chromatography and iodometric titration methods were used to establish the products of this process and amount of the unreacted hydrogen peroxide. 1,2-Epoxylimonene, 1,2-epoxylimonene diol, perillyl alcohol, carvone and carveol have been determined as the main products of this process. All these compounds are very valuable raw materials for organic syntheses, medicine or cosmetic and food industry.


2006 ◽  
Vol 60 (5-6) ◽  
pp. 120-128
Author(s):  
Miodrag Smelcerovic ◽  
Dragan Djordjevic ◽  
Mile Novakovic

The textile industry is one of the biggest industrial consumers of water especially dye houses which utilize synthetic dyes and other chemicals. Natural dyes are generally environmental friendly and have many advantages over synthetic dyes with respect to production and application. In recent years, there has been an interest in the application of these dyes due to their bio-degradability and higher compatibility with the environment. A review of previous work in the field of applying dyestuffs of natural source as possible textile dyes is given. From an ecological viewpoint, the substitution of chemical dyes by 'natural products' in textile dyeing may be feasible and may represent not only a strategy to reduce risks and pollutants, but also an opportunity for new markets and new businesses which can develop from the inclusion of ecology in trade policy.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3271
Author(s):  
Maricarmen Iñiguez-Moreno ◽  
Juan Arturo Ragazzo-Sánchez ◽  
Montserrat Calderón-Santoyo

Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.


Author(s):  
Guyue Cheng ◽  
Jianan Ning ◽  
Saeed Ahmed ◽  
Junhong Huang ◽  
Rizwan Ullah ◽  
...  

Abstract Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.


Sign in / Sign up

Export Citation Format

Share Document