dependency parser
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 36)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Sujata Rani ◽  
Parteek Kumar

In this paper, an aspect-based Sentiment Analysis (SA) system for Hindi is presented. The proposed system assigns a separate sentiment towards the different aspects of a sentence as well as it evaluates the overall sentiment expressed in a sentence. In this work, Hindi Dependency Parser (HDP) is used to determine the association between an aspect word and a sentiment word (using Hindi SentiWordNet) and works on the idea that closely connected words come together to express a sentiment about a certain aspect. By generating a dependency graph, the system assigns the sentiment to an aspect having a minimum distance between them and computes the overall polarity of the sentence. The system achieves an accuracy of 83.2% on a corpus of movie reviews and its results are compared with baselines as well as existing works on SA. From the results, it has been observed that the proposed system has the potential to be used in emerging applications like SA of product reviews, social media analysis, etc.


The goal of dependency parsing is to seek a functional relationship among words. For instance, it tells the subject-object relation in a sentence. Parsing the Indonesian language requires information about the morphology of a word. Indonesian grammar relies heavily on affixation to combine root words with affixes to form another word. Thus, morphology information should be incorporated. Fortunately, it can be encoded implicitly by word representation. Embeddings from Language Models (ELMo) is a word representation which be able to capture morphology information. Unlike most widely used word representations such as word2vec or Global Vectors (GloVe), ELMo utilizes a Convolutional Neural Network (CNN) over characters. With it, the affixation process could ideally encoded in a word representation. We did an analysis using nearest neighbor words and T-distributed Stochastic Neighbor Embedding (t-SNE) word visualization to compare word2vec and ELMo. Our result showed that ELMo representation is richer in encoding the morphology information than it's counterpart. We trained our parser using word2vec and ELMo. To no surprise, the parser which uses ELMo gets a higher accuracy than word2vec. We obtain Unlabeled Attachment Score (UAS) at 83.08 for ELMo and 81.35 for word2vec. Hence, we confirmed that morphology information is necessary, especially in a morphologically rich language like Indonesian. Keywords: ELMo, Dependency Parser, Natural Language Processing, word2vec


This paper describes how bootstrapping was used to extend the development of the Urdu Noisy Text dependency treebank. To overcome the bottleneck of manually annotating corpus for a new domain of user-generated text, MaltParser, an opensource, data-driven dependency parser, is used to bootstrap the treebank in semi-automatic manner for corpus annotation after being trained on 500 tweet Urdu Noisy Text Dependency Treebank. Total four bootstrapping iterations were performed. At the end of each iteration, 300 Urdu tweets were automatically tagged, and the performance of parser model was evaluated against the development set. 75 automatically tagged tweets were randomly selected out of pre-tagged 300 tweets for manual correction, which were then added in the training set for parser retraining. Finally, at the end of last iteration, parser performance was evaluated against test set. The final supervised bootstrapping model obtains a LA of 72.1%, UAS of 75.7% and LAS of 64.9%, which is a significant improvement over baseline score of 69.8% LA, 74% UAS, and 62.9% LAS


2021 ◽  
Vol 8 ◽  
pp. 100063
Author(s):  
Nilo Pedrazzini ◽  
Hanne Martine Eckhoff

Author(s):  
Jiaying Lu ◽  
Jinho D Choi

Salience Estimation aims to predict term importance in documents.Due to few existing human-annotated datasets and the subjective notion of salience, previous studies typically generate pseudo-ground truth for evaluation. However, our investigation reveals that the evaluation protocol proposed by prior work is difficult to replicate, thus leading to few follow-up studies existing. Moreover, the evaluation process is problematic: the entity linking tool used for entity matching is very noisy, while the ignorance of event argument for event evaluation leads to boosted performance. In this work, we propose a light yet practical entity and event salience estimation evaluation protocol, which incorporates the more reliable syntactic dependency parser. Furthermore, we conduct a comprehensive analysis among popular entity and event definition standards, and present our own definition for the Salience Estimation task to reduce noise during the pseudo-ground truth generation process. Furthermore, we construct dependency-based heterogeneous graphs to capture the interactions of entities and events. The empirical results show that both baseline methods and the novel GNN method utilizing the heterogeneous graph consistently outperform the previous SOTA model in all proposed metrics.


Author(s):  
Bo An ◽  
Congjun Long

The research of Tibetan dependency analysis is mainly limited to two challenges: lack of a dataset and reliance on expert knowledge. To resolve the preceding challenges, we first introduce a new Tibetan dependency analysis dataset, and then propose a neural-based framework that resolves the reliance on the expert knowledge issue by automatically extracting feature vectors of words and predicts their head words and type of dependency arcs. Specifically, we convert the words in the sentence into distributional vectors and employ a sequence to vector network to extract feature words. Furthermore, we introduce a head classifier and type classifier to predict the head word and type of dependency arc, respectively. Experiments demonstrate that our model achieves promising performance on the Tibetan dependency analysis task.


2021 ◽  
Author(s):  
James Barry ◽  
Alireza Mohammadshahi ◽  
Joachim Wagner ◽  
Jennifer Foster ◽  
James Henderson

Sign in / Sign up

Export Citation Format

Share Document