calcium mobilization assay
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1160
Author(s):  
Adrien Chastel ◽  
Delphine Vimont ◽  
Stephane Claverol ◽  
Marion Zerna ◽  
Sacha Bodin ◽  
...  

Background: [68Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients. Methods: Stability of the investigated kits over one year was determined using LC/MS/MS and UV-HPLC. Direct 68Ga-radiolabeling was optimized with respect to buffer (pH), temperature, reaction time and shaking time. Conventionally prepared [68Ga]Ga-RM2 using an automated synthesizer was used as a comparator. Finally, the [68Ga]Ga-RM2 product was assessed with regards to hydrophilicity, affinity, internalization, membrane bound fraction, calcium mobilization assay and efflux, which is a valuable addition to the in vivo literature. Results: The kit-based formulation, kept between 2 °C and 8 °C, was stable for over one year. Using acetate buffer pH 3.0 in 2.5–5.1 mL total volume, heating at 100 °C during 10 min and cooling down for 5 min, the [68Ga]Ga-RM2 produced by kit complies with the requirements of the European Pharmacopoeia. Compared with the module production route, the [68Ga]Ga-RM2 produced by kit was faster, displayed higher yields, higher volumetric activity and was devoid of ethanol. In in vitro evaluations, the [68Ga]Ga-RM2 displayed sub-nanomolar affinity (Kd = 0.25 ± 0.19 nM), receptor specific and time dependent membrane-bound fraction of 42.0 ± 5.1% at 60 min and GRP-R mediated internalization of 24.4 ± 4.3% at 30 min. The [natGa]Ga-RM2 was ineffective in stimulating intracellular calcium mobilization. Finally, the efflux of the internalized activity was 64.3 ± 6.5% at 5 min. Conclusion: The kit-based formulation of RM2 is suitable to disseminate GRP-R imaging and therapy to distant hospitals without complex radiochemistry equipment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248983
Author(s):  
Christudas Morais ◽  
Retnagowri Rajandram ◽  
Jade S. Blakeney ◽  
Abishek Iyer ◽  
Jacky Y. Suen ◽  
...  

Expression of the protease sensing receptor, protease activated receptor-2 (PAR2), is elevated in a variety of cancers and has been promoted as a potential therapeutic target. With the development of potent antagonists for this receptor, we hypothesised that they could be used to treat renal cell carcinoma (RCC). The expression of PAR2 was, therefore, examined in human RCC tissues and selected RCC cell lines. Histologically confirmed cases of RCC, together with paired non-involved kidney tissue, were used to produce a tissue microarray (TMA) and to extract total tissue RNA. Immunohistochemistry and qPCR were then used to assess PAR2 expression. In culture, RCC cell lines versus primary human kidney tubular epithelial cells (HTEC) were used to assess PAR2 expression by qPCR, immunocytochemistry and an intracellular calcium mobilization assay. The TMA revealed an 85% decrease in PAR2 expression in tumour tissue compared with normal kidney tissue. Likewise, qPCR showed a striking reduction in PAR2 mRNA in RCC compared with normal kidney. All RCC cell lines showed lower levels of PAR2 expression than HTEC. In conclusion, we found that PAR2 was reduced in RCC compared with normal kidney and is unlikely to be a target of interest in the treatment of this type of cancer.


2020 ◽  
Vol 26 (1) ◽  
pp. 140-150
Author(s):  
Ann M. Decker ◽  
Kelly M. Mathews ◽  
Bruce E. Blough ◽  
Brian P. Gilmour

The human trace amine-associated receptor 1 (hTAAR1) is a G protein-coupled receptor (GPCR) that is widely expressed in monoaminergic nuclei in the central nervous system and has therapeutic potential for multiple diseases, including drug addiction and schizophrenia. Thus, identification of novel hTAAR1 ligands is critical to advancing our knowledge of hTAAR1 function and to the development of therapeutics for a wide range of diseases. Herein we describe the development of a robust, 3-addition high-throughput screening (HTS) calcium mobilization assay using stable CHO-Gαq16-hTAAR1 cells, which functionally couple hTAAR1 to the promiscuous Gαq16 protein and thus allow signal transduction to occur through mobilization of internal calcium. Our previously established 96-well hTAAR1 assay was first miniaturized to the 384-well format and optimized to provide an assay with a Z′ factor of 0.84, which is indicative of a robust HTS assay. Using the 3-addition protocol, 22,000 compounds were screened and yielded a ~1% agonist hit rate and a ~0.2% antagonist hit rate. Of the antagonist hits, two confirmed hits are the most potent hTAAR1 antagonists identified to date (IC50 = 206 and 281 nM). While scientists have been studying hTAAR1 for years, the lack of suitable hTAAR1 antagonists has been a major roadblock for studying the basic pharmacology of hTAAR1. Thus, these new ligands will serve as valuable tools to study hTAAR1-mediated signaling mechanisms, therapeutic potential, and in vivo functions.


2019 ◽  
Author(s):  
Disha Gandhi ◽  
Ricardo Rosas, Jr. ◽  
Eric Greve ◽  
Kaitlin Kentala ◽  
N'Guessan Diby ◽  
...  

Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective negative allosteric modulator of PAR1 that inhibits human platelet aggregation. It showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.


Author(s):  
Disha Gandhi ◽  
Ricardo Rosas, Jr. ◽  
Eric Greve ◽  
Kaitlin Kentala ◽  
N'Guessan Diby ◽  
...  

Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective negative allosteric modulator of PAR1 that inhibits human platelet aggregation. It showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.


2018 ◽  
Author(s):  
Disha M. Gandhi ◽  
Mark W. Majewski ◽  
Ricardo Rosas ◽  
Kaitlin Kentala ◽  
Trevor J. Foster ◽  
...  

We report a detailed protocol for an intracellular calcium mobilization assay with adherent endothelial cells in multiwell plates that was used to study a number of different PAR1 and PAR2 ligands, including an alkynylated version of the PAR1 antagonist RWJ-58259 that is suitable for the preparation of tagged or conjugate compounds. Using the cell line EA.hy926, it was necessary to perform media exchanges with automated liquid handling equipment in order to obtain optimal and reproducible antagonist concentration-response curves. The assay was used to confirm that vorapaxar acts as an irreversible antagonist of PAR1 in endothelium, and parmodulin 2 (ML161) and the related parmodulin RR-90 were found to inhibit PAR1 reversibly, in a manner consistent with negative allosteric modulation. Detailed synthetic protocols are also provided for several known and novel PAR ligands.<br>


2018 ◽  
Author(s):  
Disha M. Gandhi ◽  
Mark W. Majewski ◽  
Ricardo Rosas ◽  
Kaitlin Kentala ◽  
Trevor J. Foster ◽  
...  

We report a detailed protocol for an intracellular calcium mobilization assay with adherent endothelial cells in multiwell plates that was used to study a number of different PAR1 and PAR2 ligands, including an alkynylated version of the PAR1 antagonist RWJ-58259 that is suitable for the preparation of tagged or conjugate compounds. Using the cell line EA.hy926, it was necessary to perform media exchanges with automated liquid handling equipment in order to obtain optimal and reproducible antagonist concentration-response curves. The assay was used to confirm that vorapaxar acts as an irreversible antagonist of PAR1 in endothelium, and parmodulin 2 (ML161) and the related parmodulin RR-90 were found to inhibit PAR1 reversibly, in a manner consistent with negative allosteric modulation. Detailed synthetic protocols are also provided for several known and novel PAR ligands.<br>


2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Ann M. Decker ◽  
Elaine A. Gay ◽  
Kelly M. Mathews ◽  
Taylor C. Rosa ◽  
Tiffany L. Langston ◽  
...  

MedChemComm ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 1897-1908 ◽  
Author(s):  
Kiran S. Toti ◽  
Shanu Jain ◽  
Antonella Ciancetta ◽  
Ramachandran Balasubramanian ◽  
Saibal Chakraborty ◽  
...  

Uracil nucleotides containing a south-bicyclo[3.1.0]hexane ((S)-methanocarba) ring system in place of the ribose ring were synthesized and shown to be potent P2Y6R agonists in a calcium mobilization assay.


Sign in / Sign up

Export Citation Format

Share Document