subunit joining
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zuben P. Brown ◽  
Irina S. Abaeva ◽  
Swastik De ◽  
Christopher U.T. Hellen ◽  
Tatyana V. Pestova ◽  
...  

Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Direct binding of the IRES to the 40S subunit places the initiation codon into the P site, where it base-pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Then, eIF5 and eIF5B mediate subunit joining. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. Here, we present cryo-EM structures of IRES initiation complexes at resolutions up to 3.5 Å that cover all major stages from initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role for IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes that prepare them for subunit joining.


2021 ◽  
Author(s):  
Christopher P. Lapointe ◽  
Rosslyn Grosely ◽  
Masaaki Sokabe ◽  
Carlos Alvarado ◽  
Jinfan Wang ◽  
...  

Joining of the ribosomal subunits at a translation start site on a messenger RNA during initiation commits the ribosome to synthesize a protein. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when universally-conserved eukaryotic initiation factors (eIFs) eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we examined initiation complexes that contained both eIF1A and eIF5B using single-particle electron cryo-microscopy. The resulting structure illuminated how eukaryote-specific contacts between eIF1A and eIF5B remodel the initiation complex to orient initiator tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during human translation initiation.


2021 ◽  
Author(s):  
Jinfan Wang ◽  
Carlos Alvarado ◽  
Byung-Sik Shin ◽  
Jonathan Bohlen ◽  
Thomas E. Dever ◽  
...  

AbstractHow the eukaryotic 43S preinitiation complex scans along the 5′ untranslated region (5′UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. Once engaged with the mRNA, 43S scanning occurs at >100 nucleotides per second, independent of multiple cycles of ATP-hydrolysis by RNA helicases. The scanning ribosomes can proceed through RNA secondary structures, but 5′UTR hairpin sequences near start codons drive scanning ribosomes at start codons back in the 5′ direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5′UTR structures and upstream near-cognate start codons.One Sentence SummaryDirect observation of scanning eukaryotic ribosomes establishes a quantitative framework of scanning and its regulation.


2021 ◽  
Author(s):  
Pekka Jaako ◽  
Alexandre Faille ◽  
Shengjiang Tan ◽  
Chi C Wong ◽  
Norberto Escudero-Urquijo ◽  
...  

Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1 (both mutated in the leukaemia predisposition disorder Shwachman-Diamond syndrome) license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. Here, we show that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. Our data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukaemia predisposition disorder.


2020 ◽  
Vol 48 (14) ◽  
pp. 7924-7943 ◽  
Author(s):  
Priyanka Maiti ◽  
Hana Antonicka ◽  
Anne-Claude Gingras ◽  
Eric A Shoubridge ◽  
Antoni Barrientos

Abstract Biogenesis of mammalian mitochondrial ribosomes (mitoribosomes) involves several conserved small GTPases. Here, we report that the Obg family protein GTPBP5 or MTG2 is a mitochondrial protein whose absence in a TALEN-induced HEK293T knockout (KO) cell line leads to severely decreased levels of the 55S monosome and attenuated mitochondrial protein synthesis. We show that a fraction of GTPBP5 co-sediments with the large mitoribosome subunit (mtLSU), and crosslinks specifically with the 16S rRNA, and several mtLSU proteins and assembly factors. Notably, the latter group includes MTERF4, involved in monosome assembly, and MRM2, the methyltransferase that catalyzes the modification of the 16S mt-rRNA A-loop U1369 residue. The GTPBP5 interaction with MRM2 was also detected using the proximity-dependent biotinylation (BioID) assay. In GTPBP5-KO mitochondria, the mtLSU lacks bL36m, accumulates an excess of the assembly factors MTG1, GTPBP10, MALSU1 and MTERF4, and contains hypomethylated 16S rRNA. We propose that GTPBP5 primarily fuels proper mtLSU maturation by securing efficient methylation of two 16S rRNA residues, and ultimately serves to coordinate subunit joining through the release of late-stage mtLSU assembly factors. In this way, GTPBP5 provides an ultimate quality control checkpoint function during mtLSU assembly that minimizes premature subunit joining to ensure the assembly of the mature 55S monosome.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 104-104
Author(s):  
Elif Asik ◽  
Nimrat Chatterjee ◽  
Alison A. Bertuch

The inherited bone marrow failure syndromes (IBMFS) are rare genetic disorders caused by mutations in critical components of fundamental cellular processes such as ribosome biogenesis, DNA repair, and telomere maintenance. The IBMFS Shwachman-Diamond syndrome(SDS) and Diamond-Blackfan anemia (DBA) are classified as ribosomopathies due to etiologic mutations in genes encoding factors involved in ribosome biogenesis (SBDSin the majority of patients with SDS) or ribosomal proteins (RPS19most commonly in patients with DBA). Although these disorders can be distinguished clinically and from the other IBMFS, they share with each other and with other IBMFS increased predisposition to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas genomic instability due to defective DNA repair or telomere maintenance is thought to underlie cancer predisposition in the IBMFS Fanconi anemia and dyskeratosis congenita, respectively, the molecular mechanisms driving cancer in SDS and DBA are not fully understood. Our research has focused on DNA repair in SDS and DBA. A prior report suggested lymphoblastoid cell lines (LCLs) derived from patients with SDS arehypersensitive to ionizing radiation (IR). Consistent with this, we found SDS-LCLs had decreased survival following IR compared to control-LCLsin colony survival assays. To determine if this cellular phenotype was unique to SDS or present in the other IBMFS ribosomopathy, DBA, we examined LCLs derived from patients with DBA, including those with mutations in RPS19, RPS26, RPL5and RPL11. We found that the DBA-LCLs were similarly hypersensitive to IR as compared to control-LCLs. Further examination of γ-H2AX, a DNA damage response (DDR) factor and marker of DNA double strand breaks (DSBs), revealed that SDS- and DBA-LCLs had delayed resolution of γ-H2AX foci and increased protein levels at 24 hrs after IR as compared to control LCLs. p53, phospho-ATM, and DNA-PKcs protein levels were also higher in SDS-LCL compared to controls. The decreased survival and increased and sustained DDR following IR led us to hypothesize that SDS and DBA cells have a defect in DSB repair. There are two major pathways of DSB repair in mammals, nonhomologous end-joining (NHEJ) and homology-directed repair (HDR), and loss of either results in hypersensitivity to IR. To examine each pathway, we employed U2OS (human osteosarcoma) and HCT116 (human colon cancer) cells containing an integrated green fluorescent protein HDR or NHEJ reporter transgene. Interestingly, we found that knockdown of either SBDS or RPS19 proteins resulted in an approximately 50% reduction in HDR efficiency but no change in NHEJefficiency compared to the scrambled control in both cell lines. We next sought to determine the mechanism underlying the effect of SBDS and RPS19 deficiency on HDR. A survey of proteins required for HDR revealed a reduction in the recombinase RAD51 in SDS-LCLs and in SBDS-depleted HCT116 and U2OS cells, whereas, an initial survey in SDS-LCLs[e1] of factors involved in NHEJ did not reveal a specific NHEJ factor deficiency. Knockdown of eiF6 is known to rescue the defect in 40S and 60S ribosome subunit joining that manifests in SDS patient cells. However, we found eIF6 depletion failed to rescue the level of RAD51 protein and had no impact on HDR in SBDS-deficient cells. We conclude that decreased RAD51 levels in SBDS-deficient cells might contribute to impaired HDR, however, this decrease is independent of the ribosome subunit joining defect. Similarly, RPS19 knock down resulted in a reduction in RAD51 protein level, suggesting a potentially common pathway. We also asked whether SBDS or RPS19 might be more directly involved in the DDR or repair of DSBs. Consistent with this, we found SBDS and RPS19 recruited to chromatin surrounding an I-Sce1 site following DSB induction in chromatin immunoprecipitation assays. Collectively, these findings provide evidence that SBDS and RPS19 may be directly involved in the DDR or DSB repair and raise the possibility that loss of this function may contribute to MDS/AML predisposition in SDS and DBA patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Shengjiang Tan ◽  
Laëtitia Kermasson ◽  
Angela Hoslin ◽  
Pekka Jaako ◽  
Alexandre Faille ◽  
...  

Abstract Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 876-876
Author(s):  
Pekka Jaako ◽  
Chi C Wong ◽  
David Adams ◽  
Alan J. Warren

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure and a striking propensity to develop poor prognosis myelodysplastic syndrome and acute myeloid leukemia. In 90 % of cases the disease is caused by biallelic mutations in the gene encoding SBDS. We have shown previously that SBDS is a cytoplasmic ribosome assembly factor that catalyzes the release of the eukaryotic initiation factor 6 (eIF6) from the subunit joining interface of 60S ribosomal subunit (Menne et al, 2007; Finch et al, 2011). Deficiency of SBDS therefore results in aberrant retention of eIF6 on the 60S subunits that in turn perturbs ribosomal subunit joining and the formation of translation-competent 80S ribosomes. However, the mechanism linking defective ribosome assembly to marrow failure and leukemia in SDS remain poorly understood. Lack of viable mouse models presents a barrier to progress in understanding SDS disease pathophysiology and to evaluate novel therapies. We hypothesized that induced overexpression of eIF6 would mimic the consequences of SBDS deficiency by reducing the cytoplasmic pool of free 60S subunits and impairing translation. To test this hypothesis we have generated a novel transgenic eIF6 mouse model for SDS using KH2 embryonic stem cells that constitutively express the M2-reverse tetracycline transactivator at the Rosa26 locus with the EIF6 gene targeted downstream of the Col1a1 locus. This strategy permits systemic doxycycline-inducible and graded overexpression of eIF6 through control of the transgene copy number. We have validated that eIF6 overexpression promotes an increase in eIF6-bound cytoplasmic 60S subunits with a concomitant reduction in 80S ribosomes and polysomes in c-kit+ hematopoietic progenitor cells isolated from the transgenic eIF6 mice, thereby recapitulating the ribosomal subunit joining defect observed in patients with SDS. In vitro, the hematopoietic progenitor cells exhibit a strict eIF6 dose-dependent expansion defect. In vivo, mice with graded eIF6 overexpression are viable but develop macrocytic anemia with reticulocytopenia, thrombocytosis and mild leukopenia. Bone marrow transfer experiments demonstrate that the phenotype is autonomous to the hematopoietic system. Longitudinal phenotypic analyses in primary and transplanted animals are ongoing. Flow cytometric analysis of the bone marrow from transgenic eIF6 mice reveals a significant increase in the frequencies of preCFU-E and CFU-E erythroid progenitor cells and erythroblasts, but a significant reduction in the frequency of reticulocytes. Furthermore, we observe a striking accumulation of abnormal orthochromatic erythroblast-like cells that appear to have failed to enucleate, comprising approximately 1.5 % of the total bone marrow cells. Amnis ImageStream analysis, which combines flow cytometry with fluorescent microscopy, reveals a significant decrease in the frequency of erythroblasts that are able to complete the enucleation process. To address the underlying mechanism, we hypothesized that by impairing the formation of translation-competent 80S ribosomes, eIF6 overexpression would reduce the global rate of protein synthesis. Indeed, O-propargyl-puromycin incorporation assays established that the erythroblasts from the transgenic eIF6 mice have an approximately 3-fold reduction in global protein synthesis rate. Furthermore, our preliminary data suggest that the erythroid phenotype is p53-independent. Finally, erythroblasts from the transgenic eIF6 mice show a significant increase in levels of reactive oxygen species, but the functional significance of this finding remains unclear. We conclude that reduced rates of global translation drive defective hematopoiesis in the transgenic eIF6 mice. Importantly, eIF6 overexpression in vivo phenocopies SBDS depletion in human CD34+ cells (Sen et al, 2011). Together with the recent discovery of DNAJC21 (the human homologue of the 60S ribosomal assembly factor JJJ1 in yeast) as an SDS disease gene, our data support the hypothesis that deregulated cytoplasmic 60S subunit maturation and reduced translation are the primary drivers of the hematopoietic defect in SDS. Our viable transgenic eIF6 mouse model provides a unique tool to further dissect the mechanisms that underlie bone marrow failure and malignant transformation in SDS and for the development of novel therapeutics. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 372 (1716) ◽  
pp. 20160186 ◽  
Author(s):  
Christopher H. S. Aylett ◽  
Nenad Ban

In all organisms, mRNA-directed protein synthesis is catalysed by ribosomes. Although the basic aspects of translation are preserved in all kingdoms of life, important differences are found in the process of translation initiation, which is rate-limiting and the most important step for translation regulation. While great strides had been taken towards a complete structural understanding of the initiation of translation in eubacteria, our understanding of the eukaryotic process, which includes numerous eukaryotic-specific initiation factors, was until recently limited owing to a lack of structural information. In this review, we discuss recent results in the field that provide an increasingly complete molecular description of the eukaryotic initiation process. The structural snapshots obtained using a range of methods now provide insights into the architecture of the initiation complex, start-codon recognition by the initiator tRNA and the process of subunit joining. Future advances will require both higher-resolution insights into previously characterized complexes and mapping of initiation factors that control translation on an additional level by interacting only peripherally or transiently with ribosomal subunits. This article is part of the themed issue ‘Perspectives on the ribosome’.


2015 ◽  
Vol 112 (37) ◽  
pp. 11559-11564 ◽  
Author(s):  
Qi Liu ◽  
Kurt Fredrick

Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors—IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation.


Sign in / Sign up

Export Citation Format

Share Document