solvable radical
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 10 (3) ◽  
pp. 229
Author(s):  
EDI KURNIADI
Keyword(s):  

Dalam artikel ini dipelajari aljabar Lie affine Frobenius aff(2, R) berdimensi 6. Aljabar Lie aff(2, R) dapat didekomposisi menggunakan dekomposisi Levi menjadi aljabar Lie linear khusus semisederhana sl(2, R) berdimensi 3, subaljabar Lie komutatif R ⊂ R2 berdimensi 2, dan split torus T berdimensi 1 sedemikian sehingga aff(2, R) = sl(2, R) ⊕ R ⊕ T. Karena aljabar Lie sl(2, R) semisederhana maka bracket Lie-nya dapat dinyatakan sebagai [sl(2, R), sl(2, R)] = sl(2, R). Selanjutnya, misalkan g = R⊕T sehingga aff(2, R) = sl(2, R) ⊕ g. Diperoleh bahwa [sl(2, R), g] ⊆ g dan [g, g] ⊆ g. Dalam hal ini, g adalah solvable radical dari aff(2, R).Kata Kunci: Aljabar Lie affine, Aljabar Lie Semisederhana, Dekomposisi Levi


Author(s):  
Dietrich Burde ◽  
Karel Dekimpe ◽  
Bert Verbeke

We continue the algebraic study of almost inner derivations of Lie algebras over a field of characteristic zero and determine these derivations for free nilpotent Lie algebras, for almost abelian Lie algebras, for Lie algebras whose solvable radical is abelian and for several classes of filiform nilpotent Lie algebras. We find a family of [Formula: see text]-dimensional characteristically nilpotent filiform Lie algebras [Formula: see text], for all [Formula: see text], all of whose derivations are almost inner. Finally, we compare the almost inner derivations of Lie algebras considered over two different fields [Formula: see text] for a finite-dimensional field extension.


2020 ◽  
Vol 23 (3) ◽  
pp. 447-470
Author(s):  
Nanying Yang ◽  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev

AbstractWe refer to the set of the orders of elements of a finite group as its spectrum and say that groups are isospectral if their spectra coincide. We prove that, except for one specific case, the solvable radical of a nonsolvable finite group isospectral to a finite simple group is nilpotent.


2017 ◽  
Vol 29 (2) ◽  
pp. 259-275 ◽  
Author(s):  
Barbara Baumeister ◽  
Attila Maróti ◽  
Hung P. Tong-Viet

AbstractWe prove that for every ${\epsilon>0}$ there exists a ${\delta>0}$ such that every group of order ${n\geq 3}$ has at least ${\delta\log_{2}n/{(\log_{2}\log_{2}n)}^{3+\epsilon}}$ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order n has more than ${\log_{3}n}$ conjugacy classes. We answer Bertram’s question in the affirmative for groups with a trivial solvable radical.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650070 ◽  
Author(s):  
K. Jayalakshmi ◽  
G. Lakshmi Devi

We give a description of a 2-torsion free Vinberg ([Formula: see text]) ring [Formula: see text]. If every nonzero root space of [Formula: see text] for [Formula: see text] is one-dimensional where [Formula: see text] is a split abelian Cartan subring of [Formula: see text] which is nil on [Formula: see text] then [Formula: see text] is a Lie ring isomorphic to [Formula: see text]. This generalizes the known result obtained by Myung for the case that [Formula: see text] is a 2-torsion free Vinberg ([Formula: see text]) ring and is power associative. We also give a condition that a Levi factor [Formula: see text] of [Formula: see text] be an ideal of [Formula: see text] when the solvable radical of [Formula: see text] is nilpotent. We apply these results for reductive case of [Formula: see text].


2016 ◽  
Vol 15 (07) ◽  
pp. 1650130 ◽  
Author(s):  
Pavel Kolesnikov

We prove that a finite torsion-free conformal Lie algebra with a splitting solvable radical has a finite faithful conformal representation.


2014 ◽  
Vol 415 ◽  
pp. 88-111 ◽  
Author(s):  
Simon Guest ◽  
Dan Levy
Keyword(s):  

2013 ◽  
Vol 20 (04) ◽  
pp. 573-578 ◽  
Author(s):  
Dušan Pagon ◽  
Dušan Repovš ◽  
Mikhail Zaicev

We study gradings by non-commutative groups on finite dimensional Lie algebras over an algebraically closed field of characteristic zero. It is shown that if L is graded by a non-abelian finite group G, then the solvable radical R of L is G-graded and there exists a Levi subalgebra B=H1⊕ ⋯ ⊕ Hm homogeneous in G-grading with graded simple summands H1,…,Hm. All Supp Hi (i=1,…,m) are commutative subsets of G.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350069 ◽  
Author(s):  
A. S. GORDIENKO

We prove that one of the conditions in Zaicev's formula for the PI-exponent and in its natural generalization for the Hopf PI-exponent, can be weakened. Using the modification of the formula, we prove that if a finite-dimensional semisimple Lie algebra acts by derivations on a finite-dimensional Lie algebra over a field of characteristic 0, then the differential PI-exponent coincides with the ordinary one. Analogously, the exponent of polynomial G-identities of a finite-dimensional Lie algebra with a rational action of a connected reductive affine algebraic group G by automorphisms, coincides with the ordinary PI-exponent. In addition, we provide a simple formula for the Hopf PI-exponent and prove the existence of the Hopf PI-exponent itself for H-module Lie algebras whose solvable radical is nilpotent, assuming only the H-invariance of the radical, i.e. under weaker assumptions on the H-action, than in the general case. As a consequence, we show that the analog of Amitsur's conjecture holds for G-codimensions of all finite-dimensional Lie G-algebras whose solvable radical is nilpotent, for an arbitrary group G.


2013 ◽  
Vol 23 (05) ◽  
pp. 1011-1062 ◽  
Author(s):  
FRITZ GRUNEWALD ◽  
BORIS KUNYAVSKII ◽  
EUGENE PLOTKIN

We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document