optimal cost
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 64)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 11 (5) ◽  
pp. 349-385
Author(s):  
S.A. KUROCHKIN

The effectiveness of judicial protection is largely determined by the efficiency of proof. Modern methods of studying the effectiveness of law and legal activity make it possible to analyze issues of the efficiency of proof. What is the efficiency of proof? Should the proof be effective? Is it necessary to evaluate the effectiveness of evidence and for what? Can the efficiency of proof be assessed? How to evaluate and how to ensure such efficiency? What measures and procedural rules reduce costs and increase the efficiency of proof? The answers to these and many other questions are offered in the article, which also reveals the general theoretical and methodological aspects of the problem of the efficiency of proof. In conclusion of this paper the author puts forward the thesis based on the study that the very study and evaluation of the effectiveness of judicial proof allows to minimize its costs, to select the optimal cost-effective procedural means of achieving the goals of proof, to rationalize its procedural order. The study of the effectiveness of proof, thus, makes it possible to rationally choose the most effective and cost-effective alternative to build a procedural mechanism of proof.


2021 ◽  
Author(s):  
Khaled M. Mazen Al Khoujah ◽  
Antonio - Medina ◽  
Juma Rashid Al Qaydi ◽  
Jawwad Kaleem ◽  
Fatima Hassan Al Mansoori ◽  
...  

Abstract An innovative design was implemented as a solution for the repetitive failure of a plate heat exchanger installed at Gas Processing Facilitates due to weld cracking, the new design was introduced for the first time in the facility, demonstrating the novelty of utilizing new technologies and enhanced designs in Heat Exchangers used for gas processing. The main challenges were in accommodating various operating modes and ensure the prevention of reoccurrence of the failures. The success was achieved through the collaboration between the operating company and Industry experts in heat transfer equipment to replace the existing design at the gas processing Facilitates with no change in piping layouts, hence, performing the replacement at optimal cost and maximum benefit.


Author(s):  
Prafull Bhumarkar

Abstract: Electric vehicles are the demand of the current scenario to fight with the increasing levels of pollution. Electric vehicles operate by getting power from the battery which needs to be charged after a particular duration. Battery swapping stations are used for providing the optimal power for charging these batteries. An algorithm known as Particle swarm optimization can be used to find the optimal cost of these battery swapping stations. The project presents an expository study about ParticleSwarm Optimization and thus various factors related to it. Keywords: Battery Swapping Station, Battery Charging Station, Load flow Analysis, Particle Swarm Optimization


Author(s):  
Manh Hong Duong ◽  
The Anh Han

Institutions can provide incentives to enhance cooperation in a population where this behaviour is infrequent. This process is costly, and it is thus important to optimize the overall spending. This problem can be mathematically formulated as a multi-objective optimization problem where one wishes to minimize the cost of providing incentives while ensuring a minimum level of cooperation, sustained over time. Prior works that consider this question usually omit the stochastic effects that drive population dynamics. In this paper, we provide a rigorous analysis of this optimization problem, in a finite population and stochastic setting, studying both pairwise and multi-player cooperation dilemmas. We prove the regularity of the cost functions for providing incentives over time, characterize their asymptotic limits (infinite population size, weak selection and large selection) and show exactly when reward or punishment is more cost efficient. We show that these cost functions exhibit a phase transition phenomenon when the intensity of selection varies. By determining the critical threshold of this phase transition, we provide exact calculations for the optimal cost of the incentive, for any given intensity of selection. Numerical simulations are also provided to demonstrate analytical observations. Overall, our analysis provides for the first time a selection-dependent calculation of the optimal cost of institutional incentives (for both reward and punishment) that guarantees a minimum level of cooperation over time. It is of crucial importance for real-world applications of institutional incentives since the intensity of selection is often found to be non-extreme and specific for a given population.


2021 ◽  
Vol 13 (15) ◽  
pp. 8256
Author(s):  
Mohammad Faisal Khan ◽  
Asif Pervez ◽  
Umar Muhammad Modibbo ◽  
Jahangir Chauhan ◽  
Irfan Ali

The demand for cost-efficient and clean power energy cannot be overemphasised, especially in a developing nation like India. COVID-19 has adversely affected many nations, power sector inclusive, and resiliency is imperative via flexible and sustainable power generation sources. Renewable energy sources are the primary focus of electricity production in the world. This study examined and assessed the optimal cost system of electricity generation for the socio-economic sustainability of India. A sustainable and flexible electricity generation model is developed using the concept of flexible fuzzy goal programming. This study is carried out with the aim of achieving the government’s intended nationally determined contribution goals of reducing emission levels, increasing the capacity of renewable sources and the must-run status of hydro and nuclear, and technical and financial parameters. The result shows an optimal cost solution and flexibility in how increased electricity demand would be achieved and sustained via shifting to renewable sources such as solar, wind and hydro.


Author(s):  
Marwa K. Farhan ◽  
Muayad S. Croock

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Wireless devices have been equiping extensive services over recent years. Since most of these devices are randomly distributed, a fundamental trade-off to be addressed is the transmission rate, latency, and packet loss of the ad hoc route selection in device to device (D2D) networks. Therefore, this paper introduces a notion of weighted transmission rate and total delay, as well as the probability of packet loss. By designing optimal transmission algorithms, this proposed algorithm aims to select the best path for device-to-device communication that maximizes the transmission rate while maintaining minimum delay and packet loss. Using the Lagrange optimization method, the lagrangian optimization of rate, delay, and the probability of packet loss algorithm (LORDP) is modeled. For practical designation, we consider the fading effect of the wireless channels scenario. The proposed optimal algorithm is modeled to compute the optimal cost objective function and represents the best possible solution for the corresponding path. Moreover, a simulation for the optimized algorithm is presented based on optimal cost objective function. Simulation results establish the efficiency of the proposed LORDP algorithm</span><span>.</span><span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Wireless devices have been equiping extensive services over recent years. Since most of these devices are randomly distributed, a fundamental trade-off to be addressed is the transmission rate, latency, and packet loss of the ad hoc route selection in device to device (D2D) networks. Therefore, this paper introduces a notion of weighted transmission rate and total delay, as well as the probability of packet loss. By designing optimal transmission algorithms, this proposed algorithm aims to select the best path for device-to-device communication that maximizes the transmission rate while maintaining minimum delay and packet loss. Using the Lagrange optimization method, the lagrangian optimization of rate, delay, and the probability of packet loss algorithm (LORDP) is modeled. For practical designation, we consider the fading effect of the wireless channels scenario. The proposed optimal algorithm is modeled to compute the optimal cost objective function and represents the best possible solution for the corresponding path. Moreover, a simulation for the optimized algorithm is presented based on optimal cost objective function. Simulation results establish the efficiency of the proposed LORDP algorithm</span>


2021 ◽  
pp. 105-127
Author(s):  
Ruben Milocco ◽  
Pascale Minet ◽  
Éric Renault ◽  
Selma Boumerdassi

Sign in / Sign up

Export Citation Format

Share Document