collective behavior
Recently Published Documents


TOTAL DOCUMENTS

1460
(FIVE YEARS 367)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Vol 26 ◽  
pp. 101337
Author(s):  
Carmen C. Mayorga-Martinez ◽  
Jan Vyskočil ◽  
Filip Novotný ◽  
Petr Bednar ◽  
Daniel Ruzek ◽  
...  

2022 ◽  
Author(s):  
Igor Aronson ◽  
Jiyuan Wang ◽  
Mu-Jie Huang ◽  
Remmi Baker-Sediako ◽  
Raymond Kapral

Abstract Control of the individual and collective behavior of self-propelled synthetic micro-objects has immediate application for nanotechnology, robotics, and precision medicine. Despite significant progress in the synthesis and characterization of self-propelled Janus (two-faced) particles, predictive understanding of their behavior remains challenging, especially if the particles have anisotropic forms. Here, by using molecular simulation, we describe the interactions of chemically-propelled microtori near a wall. The results show that a torus hovers at a certain distance from the wall due to a combination of gravity and hydrodynamic flows generated by the chemical activity. Moreover, electrostatic dipolar interactions between the torus and the wall result in a spontaneous tilt and horizontal translation, in a qualitative agreement with the experiment. Simulations of the dynamics of two tori near a wall provide evidence for the formation of stable self-propelled bound states. Our results illustrate that self-organization at the microscale occurs due to a combination of multiple factors, including hydrodynamic, chemical, and electrostatic interactions.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009772
Author(s):  
Marina Papadopoulou ◽  
Hanno Hildenbrandt ◽  
Daniel W. E. Sankey ◽  
Steven J. Portugal ◽  
Charlotte K. Hemelrijk

Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.


2022 ◽  
Vol 51 (1) ◽  
Author(s):  
Taras Sych ◽  
Kandice R. Levental ◽  
Erdinc Sezgin

Lipid–protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host–pathogen interactions, and transmembrane transport. At the plasma membrane, lipid–protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid–protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid–protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid–protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Soft Matter ◽  
2022 ◽  
Author(s):  
Shannon E. Moran ◽  
Isaac R. Bruss ◽  
Philip Shoenhofer ◽  
Sharon C Glotzer

Studies of active particle systems have demonstrated that particle anisotropy can impact the collective behavior of a system. However, systems studied to date have served as one-off demonstrations of concept,...


2022 ◽  
Vol 258 ◽  
pp. 05010
Author(s):  
Mariia Mitrankova ◽  
Alexander Berdnikov ◽  
Yaroslav Berdnikov ◽  
Dmitry Kotov ◽  
Iurii Mitrankov

The measurements of light hadron production in small collision systems (such as p+Al, p+Au, d+Au, 3He+Au) may allow to explore the quarkgluon plasma formation and to determine the main hadronization mechanism in the considered collisions. Such research has become particularly crucial with the observation of the light hadrons collective behavior in p/d/3He+Au collisions at √SNN = 200 GeV and in p+Al collisions at the same energy at forward and backward rapidities. Among the large variety of light hadrons, ϕ meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma. The paper presents the comparison of the obtained experimental results on ϕ meson production to different light hadron production in p+Al and 3He+Au at √SNN = 200 GeV at midrapidity. The comparisons of ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √SNN = 200 GeV at midrapidity to theoretical models predictions (PYTHIA model and default and string melting versions of the AMPT model) are also provided. The results suggest that the QGP can be formed in p/d/3He+Au collisions, but the volume and lifetime of the produced medium might be insufficient for observation of strangeness enhancement effect. Conceivably, the main hadronization mechanism of ϕ meson production in p+Al collisions is fragmentation, while in p/d/3He+Au collisions this process occurs via coalescence.


Soft Matter ◽  
2022 ◽  
Author(s):  
Haosheng Wen ◽  
Yu Zhu ◽  
Chenhui Peng ◽  
Sunil P. B. Kumar ◽  
Mohamed Laradji

In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is...


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Margarita M. Sánchez Diaz ◽  
Eyisto J. Aguilar Trejo ◽  
Daniel A. Martin ◽  
Sergio A. Cannas ◽  
Tomás S. Grigera ◽  
...  

2021 ◽  
Vol 12 (2 (34)) ◽  
pp. 62-75
Author(s):  
Gayane Harutyunyan

The paper is a theoretical review of “social movement” term definitions. Aiming to show differences among definitions within different paradigms and scientific evolution of the term the main approaches of defining social movements are discussed. Initially, social movements were studied by psychologists, who were examining different forms of collective behavior, such as mobs, crowds, protests and etc. Most of them considered social movements as an irrational and destructive form of collective action driven by the instincts of people. During the next decades, the theory of social movements was developed mostly by sociologists who, on the contrary, started to seek social reasons inducing this type of collective action. Different theoretical schools proposed various concepts of explaining the origin of social movements, but all of them agreed on the main characteristics: rational and organized collective action driven by unfulfilled social needs. Different authors linked social movement definitions with other important social phenomena such as norms and values, social conflict, social identity, and social network. Political scientists have also contributed to the study of social movements but in terms of power and state, terrorism and violence. Discussing psychological, sociological, and political science approaches to term definition we came to the conclusion that the most inclusive sociological definition is viewing social movement as a social network through which collective action is performed to achieve total or partial social change. Such kind of definition makes it possible to reveal the main criteria necessary to distinguish social movement as a separate social phenomenon from other types of collective action.


Sign in / Sign up

Export Citation Format

Share Document