uniform temperature distribution
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 21 (11) ◽  
pp. 293
Author(s):  
Shan-Xiang Wei ◽  
De-Qing Kong ◽  
Qi-Ming Wang

Abstract The non-uniform temperature distribution of the main reflector of a large radio telescope may cause serious deformation of the main reflector, which will dramatically reduce the aperture efficiency of a radio telescope. To study the non-uniform temperature field of the main reflector of a large radio telescope, numerical calculations including thermal environment factors, the coefficients on convection and radiation, and the shadow boundary of the main reflector are first discussed. In addition, the shadow coverage and the non-uniform temperature field of the main reflector of a 70-m radio telescope under solar radiation are simulated by finite element analysis. The simulation results show that the temperature distribution of the main reflector under solar radiation is very uneven, and the maximum of the root mean square temperature is 12.3°C. To verify the simulation results, an optical camera and a thermal imaging camera are used to measure the shadow coverage and the non-uniform temperature distribution of the main reflector on a clear day. At the same time, some temperature sensors are used to measure the temperature at some points close to the main reflector on the backup structure. It has been verified that the simulation and measurement results of the shadow coverage on the main reflector are in good agreement, and the cosine similarity between the simulation and the measurement is above 90%. Despite the inevitable thermal imaging errors caused by large viewing angles, the simulated temperature field is similar to the measured temperature distribution of the main reflector to a large extent. The temperature trend measured at the test points on the backup structure close to the main reflector without direct solar radiation is consistent with the simulated temperature trend of the corresponding points on the main reflector with the solar radiation. It is credible to calculate the temperature field of the main reflector through the finite element method. This work can provide valuable references for studying the thermal deformation and the surface accuracy of the main reflector of a large radio telescope.


2021 ◽  
Author(s):  
Amarjeet Kumar Singh ◽  
Krishnaiyengar Narasimhan

Abstract In the last few years, demand for hot stamped components has increased in the automotive industry. Determination of formability under hot stamping is challenging due to elevated temperature, fast cooling and high punch velocity. Although there was various strive for formability determination but had limitations with experiments like non-uniform heating of specimen, non-uniform strain and temperature distribution. Therefore, in this work, an experimental apparatus was developed to determine formability at room temperature, high temperature, hot stamping conditions, and any complex process cycle involving heating and cooling. New specimen was designed to produce different strain paths, uniform and homogenous temperature distribution with the help of FEM software using thermomechanical and thermoelectrical simulation. A micro hemispherical dome based experimental apparatus was designed using Solidworks. The designed apparatus was used in conjunction with the thermo-mechanical simulator (Gleeble-3800). Thermomechanical analysis was done in PAM STAMP software to optimize specimen size and shape to get uniform strain distribution and different strain paths. A thermoelectric FEM model was developed using Abaqus 6.14 to optimize the temperature distribution in the specimen. The developed model enables choosing the appropriate polarity of the electrical cable connection to achieve uniform temperature distribution in the specimen. Strain path and temperature profiles for experiment and simulation were compared. Further, a forming limit curve was developed using the designed apparatus to verify the feasibility of the apparatus. For feasibility test of apparatus, hot stamping process was selected. This new design apparatus can be used for a range of temperatures up to 1000 °C, hot stamping conditions, and for different materials (aluminium, magnesium alloys, different grade of steel, etc.). It concludes that the connection of different polarities of electrical cable was critical for homogenous and uniform temperature distribution in specimens.


Author(s):  
Keval S. Ramani ◽  
Chuan He ◽  
Yueh-Lin Tsai ◽  
Chinedum E. Okwudire

Parts produced by laser or electron-beam powder bed fusion (PBF) additive manufacturing are prone to residual stresses, deformations, and other defects linked to non-uniform temperature distribution during the manufacturing process. Several researchers have highlighted the important role scan sequence plays in achieving uniform temperature distribution in PBF. However, scan sequence continues to be determined offline based on trial-and-error or heuristics, which are neither optimal nor generalizable. To address these weaknesses, we have articulated a vision for an intelligent online scan sequence optimization approach to achieve uniform temperature distribution, hence reduced residual stresses and deformations, in PBF using physics-based and data-driven thermal models. This paper proposes SmartScan, our first attempt towards achieving our vision using a simplified physics-based thermal model. The conduction and convection dynamics of a single layer of the PBF process are modeled using the finite difference method and radial basis functions. Using the model, the next best feature (e.g., stripe or island) that minimizes a thermal uniformity metric is found using control theory. Simulations and experiments involving laser marking of a stainless steel plate are used to demonstrate the effectiveness of SmartScan in comparison to existing heuristic scan sequences for stripe and island scan patterns. In experiments, SmartScan yields up to 43% improvement in average thermal uniformity and 47% reduction in deformations (i.e., warpage) compared to existing heuristic approaches. It is also shown to be robust, and computationally efficient enough for online implementation.


2021 ◽  
Author(s):  
Babak Mosavati ◽  
Maziar Mosavati

Abstract The maintenance of uniform temperature distribution affects the efficiency in the most industrial applications. In the current study, a novel strategy has been developed for inverse radiative boundary design problems in radiant enclosures. This study presents the Backward Monte Carlo method to investigate the inverse boundary design of an enclosure composed of specular and diffuse surfaces. A new optimized Monte Carlo method is proposed to determine the temperature distribution of heaters to achieve desirable prescribed uniform heat flux on the design surfaces. The proposed approach is highly efficient and simple to implement with appropriate results. The evaluated heat fluxes on design surfaces and temperature distribution of heaters are compared with the case where the reradiating walls are assumed to be perfectly diffuse. In the proposed approach, for a specific range of specularity, the absorptivity of the reradiating surfaces does not affect the temperature distribution of heaters. Compared to the diffuse walls, the specular walls have more uniform temperature distribution and heat flux of heaters. This finding will provide insight into solar furnaces design to enhance temperature uniformity, making specular surfaces suitable in many industrial applications.


Author(s):  
Keval S. Ramani ◽  
Ehsan Malekipour ◽  
Chinedum E. Okwudire

Abstract Laser powder bed fusion (LPBF) is an increasingly popular approach for additive manufacturing (AM) of metals. However, parts produced by LPBF are prone to residual stresses, deformations, and other defects linked to nonuniform temperature distribution during the process. Several works have highlighted the important role (laser) scanning strategies, including laser power, scan speed, scan pattern and scan sequence, play in achieving uniform temperature distribution in LPBF. However, scan sequence continues to be determined offline based on trial-and-error or heuristics, which are neither optimal nor generalizable. To address these weaknesses, we present a framework for intelligent online scan sequence optimization to achieve uniform temperature distribution in LPBF. The framework involves the use of physics-based models for online optimization of scan sequence, while data acquired from in-situ thermal sensors provide correction or calibration of the models. The proposed framework depends on having: (1) LPBF machines capable of adjusting scan sequence in real-time; and (2) accurate and computationally efficient models and optimization approaches that can be efficiently executed online. The first challenge is addressed via a commercially available open-architecture LPBF machine. As a preliminary step towards tackling the second challenge, an analytical model is explored for determining the optimal sequence for scanning patterns in LPBF. The model is found to be deficient but provides useful insights into future work in this direction.


Sign in / Sign up

Export Citation Format

Share Document