reactive melt infiltration
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 33)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
William S. Nelson ◽  
Julia E. Hammer ◽  
Thomas Shea ◽  
Eric Hellebrand ◽  
G. Jeffrey Taylor

AbstractThe evolution of the lunar interior is constrained by samples of the magnesian suite of rocks returned by the Apollo missions. Reconciling the paradoxical geochemical features of this suite constitutes a feasibility test of lunar differentiation models. Here we present the results of a microanalytical examination of the archetypal specimen, troctolite 76535, previously thought to have cooled slowly from a large magma body. We report a degree of intra-crystalline compositional heterogeneity (phosphorus in olivine and sodium in plagioclase) fundamentally inconsistent with prolonged residence at high temperature. Diffusion chronometry shows these heterogeneities could not have survived magmatic temperatures for >~20 My, i.e., far less than the previous estimated cooling duration of >100 My. Quantitative modeling provides a constraint on the thermal history of the lower lunar crust, and the textural evidence of dissolution and reprecipitation in olivine grains supports reactive melt infiltration as the mechanism by which the magnesian suite formed.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1352
Author(s):  
Qian Sun ◽  
Huifeng Zhang ◽  
Chuanbing Huang ◽  
Weigang Zhang

In this paper, we aimed to improve the oxidation and ablation resistance of carbon fiber-reinforced carbon (CFC) composites at temperatures above 2000 °C. C/C–SiC–ZrB2 ultra-high temperature ceramic composites were fabricated through a complicated liquid–solid reactive process combining slurry infiltration (SI) and reactive melt infiltration (RMI). A liquid Si–Zr10 eutectic alloy was introduced, at 1600 °C, into porous CFC composites containing two kinds of boride particles (B4C and ZrB2, respectively) to form a SiC–ZrB2 matrix. The effects and mechanism of the introduced B4C and ZrB2 particles on the formation reaction and microstructure of the final C/C–SiC–ZrB2 composites were investigated in detail. It was found that the composite obtained from a C/C–B4C preform displayed a porous and loose structure, and the formed SiC–ZrB2 matrix distributed heterogeneously in the composite due to the asynchronous generation of the SiC and ZrB2 ceramics. However, the C/C–SiC–ZrB2 composite, prepared from a C/C–ZrB2 preform, showed a very dense matrix between the fiber bundles, and elongated plate-like ZrB2 ceramics appeared in the matrix, which were derived from the dissolution–diffusion–precipitation mechanism of the ZrB2 clusters. The latter composite exhibited a relatively higher ZrB2 content (9.51%) and bulk density (2.82 g/cm3), along with lower open porosity (3.43%), which endowed this novel composite with good mechanical properties, including pseudo-plastic fracture behavior.


Author(s):  
Jun Lu ◽  
Dewei Ni ◽  
Chunjing Liao ◽  
Haijun Zhou ◽  
Youlin Jiang ◽  
...  

AbstractFiber damage and uniform interphase preparation are the main challenges in conventional short fiber reinforced ceramic matrix composites. In this work, we develop a novel processing route in fabrication of short carbon fiber reinforced ZrB2-SiC composites (Csf/ZrB2-SiC) overcoming the above two issues. At first, Csf preforms with oriented designation and uniform PyC/SiC interphase are fabricated via direct ink writing (DIW) of short carbon fiber paste followed by chemical vapor infiltration. After that, ZrB2 and SiC are introduced into the preforms by slurry impregnation and reactive melt infiltration, respectively. Microstructure evolution and optimization of the composites during fabrication are investigated in detail. The as-fabricated Csf/ZrB2-SiC composites have a bulk density of 2.47 g/cm3, with uniform weak interphase and without serious fiber damage. Consequently, non-brittle fracture occurs in the Csf/ZrB2-SiC composites with widespread toughening mechanisms such as crack deflection and bridging, interphase debonding, and fiber pull-out. This work provides a new opportunity to the material design and selection of short fiber reinforced composites.


2021 ◽  
pp. 002199832110387
Author(s):  
Carlos R Rambo ◽  
Nahum Travitzky

This work reports the effect of TiC volume fractions on hardness of TiC/TiCu/C composites synthesized through in situ reactive infiltration of Ti-Cu alloy into porous carbon preforms prepared by 3 D-printing. Reactive melt infiltration of the alloy at 1100 °C under argon into C-preforms with different porosities resulted in materials composed of TiC, Cu-rich intermetallic matrix (Ti3Cu4) and residual carbon. The microstructure consists of TiC grains distributed along the Cu-Ti/C boundary. The hardness of TiC/Ti3Cu4/C composites could be tailored by the TiC volume fraction and the distribution in the composites, which are determined by the processing parameters and the initial porosity of the carbon templates in 3 D-printing stage. The hardness of the produced composites ranges from 350 HV to 570 HV and could be tailored by the TiC volume fraction and distribution in the composites, which are determined by the processing parameters and the initial porosity of the carbon-preforms.


2021 ◽  
Vol 47 (10) ◽  
pp. 14375-14381
Author(s):  
Zhiwei Gao ◽  
Xinyuan Lv ◽  
Laifei Cheng ◽  
Fang Ye ◽  
Litong Zhang

Sign in / Sign up

Export Citation Format

Share Document