volcanic region
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 36)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
James Holt ◽  
James C. Pechmann ◽  
Keith D. Koper

ABSTRACT The Yellowstone volcanic region is one of the most seismically active areas in the western United States. Assigning magnitudes (M) to Yellowstone earthquakes is a critical component of monitoring this geologically dynamic zone. The University of Utah Seismograph Stations (UUSS) has assigned M to 46,767 earthquakes in Yellowstone that occurred between 1 January 1984 and 31 December 2020. Here, we recalibrate the local magnitude (ML) distance and station corrections for the Yellowstone volcanic region. This revision takes advantage of the large catalog of earthquakes and an increase in broadband stations installed by the UUSS since the last ML update in 2007. Using a nonparametric method, we invert 7728 high-quality, analyst-reviewed amplitude measurements from 1383 spatially distributed earthquakes for 39 distance corrections and 20 station corrections. The inversion is constrained with four moment magnitude (Mw) values determined from time-domain inversion of regional-distance broadband waveforms by the UUSS. Overall, the new distance corrections indicate relatively high attenuation of amplitudes with distance. The distance corrections decrease with hypocentral distance from 3 km to a local minimum at 80 km, rise to a broad peak at 110 km, and then decrease again out to 180 km. The broad peak may result from superposition of direct arrivals with near-critical Moho reflections. Our ML inversion doubles the number of stations with ML corrections in and near the Yellowstone volcanic region. We estimate that the additional station corrections will nearly triple the number of Yellowstone earthquakes that can be assigned an ML. The new ML distance and station corrections will also reduce uncertainties in the mean MLs for Yellowstone earthquakes. The new MLs are ∼0.07 (±0.18) magnitude units smaller than the previous MLs and have better agreement with 12 Mws (3.15–4.49) determined by the UUSS and Saint Louis University.


2021 ◽  
Author(s):  
◽  
Anya Mira Seward

<p>A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.</p>


2021 ◽  
Author(s):  
◽  
Anna Karen Pulford

<p>Lithospheric deformation along and adjacent to the Pacific-Australian Plate boundary through New Zealand has resulted in different expressions in North and South Islands. This thesis investigates some aspects of crustal and upper mantle structure in New Zealand and is divided into two distinct parts. The first examines the structure of the obliquely compressional crustal plate boundary in South Island using seismic techniques; the second focuses on the domed topography of central North Island and its relationship to mantle processes. High density active source, one and three-component, seismic data from a transect across the Southern Alps provides information on the deformation of the crust across the Australia-Pacific plate boundary of South Island. These data show 0-0.08 s ([approximately] 0.25 %) delay times between the radial and transverse directions for shear waves (Sg and SmS phases), with maximum possible delays of 140 ms and the fast direction aligned with the transverse direction (approximately parallel to the plate boundary). The transect is perpendicular to the Alpine Fault, which is slightly oblique to the fast mantle directions determined from SKS phases. The small values of crustal splitting may result from the oblique angle of the ray paths to the actual crustal structure at depth, or the complex nature of the deformation as observed at the surface, which though on a small scale can be strongly anisotropic, may not add constructively over a large region. Poisson's ratio, determined from forward modelling of both P and S phases, shows low values of 0.21 - 0.24 for the crust of South Island. A broad region of low values ([sigma]=0.15) exists at 10-20 km depth under the Southern Alps, which corresponds to a previously identified body of low Vp and high resistivity. The low [sigma] is interpreted as low pore fluid pressure and high silica composition rocks. This contrasts with previous interpretations of iii iv high pore fluid pressure at this depth. The topography of central North Island, New Zealand, describes a 250 km wide and [approximately] 500 m high dome. Exhumation estimates from mudstone porosity measurement indicate an increase in exhumation from [approximately] 500 m at the coast to 2 km in the region of the present topographic high. Combining these values gives an estimate of rock uplift of over 2.5 km for central North Island, since 4 Ma, a rate of 0.6 mm/yr. Tectonic uplift of 1.25 km indicates that [approximately] 50 % of the rock uplift occurs in response to exhumation. An independent local estimation of differential erosion in central North Island gave 300 m of exhumation since at least 500 ka, a rate of [greater than or equal to] 0.6 mm/yr. Using a digital elevation model of New Zealand the fluvial incision of the landscape was calculated and [approximately]169 m of rebound can be attributed to incision. Contouring maximum incision elucidates a region of high incision [approximately] 50 km south of the present centre of domed rock uplift. Using incision as a proxy for rock uplift, it is hypothesised that the incision signal is recent and demonstrates the southward migration of the centre of rock uplift. Rebound of sedimentary basins due to a reduction in plate coupling forces can also account for some of the observed rock uplift. Buoyancy forces required to create the pattern and magnitude of rock uplift are investigated using a 3 D loading model of the lithosphere. Strong upward forces (65 MPa) are required under the Central Volcanic Region, combined with broad uplift (36 MPa) over western North Island, to fit the observed rock uplift. Low Pn velocities under the Central Volcanic Region indicate temperatures 500 [degrees] C hotter than that of normal mantle. This temperature anomaly corresponds to 60 kg/[cubic metre] less dense than normal mantle, which is consistent with the change in density of 66 kg/[cubic metre] estimated from the loading model and aassuming the density change occurs over a 100 km depth range. The southern extent of buoyancy forces does not correspond well to regions of high seismic attenuation in the lithosphere but instead with the region of high incision.</p>


2021 ◽  
Author(s):  
◽  
Anya Mira Seward

<p>A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.</p>


2021 ◽  
Author(s):  
◽  
Anna Karen Pulford

<p>Lithospheric deformation along and adjacent to the Pacific-Australian Plate boundary through New Zealand has resulted in different expressions in North and South Islands. This thesis investigates some aspects of crustal and upper mantle structure in New Zealand and is divided into two distinct parts. The first examines the structure of the obliquely compressional crustal plate boundary in South Island using seismic techniques; the second focuses on the domed topography of central North Island and its relationship to mantle processes. High density active source, one and three-component, seismic data from a transect across the Southern Alps provides information on the deformation of the crust across the Australia-Pacific plate boundary of South Island. These data show 0-0.08 s ([approximately] 0.25 %) delay times between the radial and transverse directions for shear waves (Sg and SmS phases), with maximum possible delays of 140 ms and the fast direction aligned with the transverse direction (approximately parallel to the plate boundary). The transect is perpendicular to the Alpine Fault, which is slightly oblique to the fast mantle directions determined from SKS phases. The small values of crustal splitting may result from the oblique angle of the ray paths to the actual crustal structure at depth, or the complex nature of the deformation as observed at the surface, which though on a small scale can be strongly anisotropic, may not add constructively over a large region. Poisson's ratio, determined from forward modelling of both P and S phases, shows low values of 0.21 - 0.24 for the crust of South Island. A broad region of low values ([sigma]=0.15) exists at 10-20 km depth under the Southern Alps, which corresponds to a previously identified body of low Vp and high resistivity. The low [sigma] is interpreted as low pore fluid pressure and high silica composition rocks. This contrasts with previous interpretations of iii iv high pore fluid pressure at this depth. The topography of central North Island, New Zealand, describes a 250 km wide and [approximately] 500 m high dome. Exhumation estimates from mudstone porosity measurement indicate an increase in exhumation from [approximately] 500 m at the coast to 2 km in the region of the present topographic high. Combining these values gives an estimate of rock uplift of over 2.5 km for central North Island, since 4 Ma, a rate of 0.6 mm/yr. Tectonic uplift of 1.25 km indicates that [approximately] 50 % of the rock uplift occurs in response to exhumation. An independent local estimation of differential erosion in central North Island gave 300 m of exhumation since at least 500 ka, a rate of [greater than or equal to] 0.6 mm/yr. Using a digital elevation model of New Zealand the fluvial incision of the landscape was calculated and [approximately]169 m of rebound can be attributed to incision. Contouring maximum incision elucidates a region of high incision [approximately] 50 km south of the present centre of domed rock uplift. Using incision as a proxy for rock uplift, it is hypothesised that the incision signal is recent and demonstrates the southward migration of the centre of rock uplift. Rebound of sedimentary basins due to a reduction in plate coupling forces can also account for some of the observed rock uplift. Buoyancy forces required to create the pattern and magnitude of rock uplift are investigated using a 3 D loading model of the lithosphere. Strong upward forces (65 MPa) are required under the Central Volcanic Region, combined with broad uplift (36 MPa) over western North Island, to fit the observed rock uplift. Low Pn velocities under the Central Volcanic Region indicate temperatures 500 [degrees] C hotter than that of normal mantle. This temperature anomaly corresponds to 60 kg/[cubic metre] less dense than normal mantle, which is consistent with the change in density of 66 kg/[cubic metre] estimated from the loading model and aassuming the density change occurs over a 100 km depth range. The southern extent of buoyancy forces does not correspond well to regions of high seismic attenuation in the lithosphere but instead with the region of high incision.</p>


2021 ◽  
Author(s):  
◽  
Diane Seward

<p>The thesis comprises studies of the marine Pleistocene sediments of the Wanganui Basin, North Island, New Zealand. Part I deals with the chronology of the sediments and correlation of horizons within and outside the basin, by dating glass shards from tephra horizons using the fission-track method. Correlation to similar tephras from Hawke's Bay, to deep-sea cores taken 1000km east of New Zealand and to the central North Island volcanic district is attempted. These fission-track ages fill a dating gap that previously existed in the New Zealand marine Quaternary sequence. Thirteen tephras were examined in the Wanganui Basin and were found to range in age from 1.50 [plus or minus] 0.21m.y.B.P. (Ohingaiti Ash) to 0.28 [plus or minus] 0.05m.y.B.P. (uppermost Finnis Road Ash). These tephras record major rhyolitic eruptive phases in the central volcanic region. The most significant eruptive phase began 1.06 [plus or minus]0.16m.y.B.P. with the deposition of the Makirikiri Tuff sediments, continued to 0.88 [plus or minus]0.13m.y.B.P. and is tentatively associated with the older ignimbrites of the King Country, west of Lake Taupe. A volcanically quiet period followed when no volcanic glass was deposited in the sediments, until 0.74 [plus or minus] 0.09m.y.B.P. Several large eruptions then occurred between 0.74 and 0.28m.y.B.P. The age of the Plio-Pleistocene boundary, at the base of the Hautawan Stage in the Wanganui Basin is 1.87m.y.B.P. The age of the base of the Nukumaruan is 1.55m.y.B.P., the Okehuan, 1.06m.y.B.P., the Castleclifflan 0.45m.y.B.P., and the Hawera Series is less than 0.38m.y.B.P. Palaeomagnetic stratigraphy was determined for the upper Nukumaruan and lower Okehan sequence in the Rangitikei River. Viscous components of magnetism were removed from the samples by thermal demagnetising, extreme care being needed to obtain consistent results. Independent dates from the palaeomagnetic stratigraphy substantially confirm the fission-track dates. The Bruhnes-Matuyama boundary is clearly defined between the Rewa and Potaka Pumice Members (aged 0.74 and 0.61m.y.B.P. respectively) of the Kaimatira Pumice Send Formation. The Jaramillo event was not recognised and is probably represented in part of the sequence where sediments are too coarse and friable to yield palaeomagnetic cores. Part II deals with the detailed sedimentology of the lower Okehuan Stage sequence which is composed of two volcaniclastic formations, the Makirikiri Tuff and Kaimatira Pubmice Sand, separated by a non-volcaniclastic siltstone formation, the Okehu Siltstone. Interpretations of the Sedimentary structures in the Makirikiri Tuff and the Kaimatira Pumice Sand Formation confirm previous conclusions of shallow water deposition based on palaeontological evidence. Some structures also indicate the high rate of sediment accumulation during deposition of the volcancic sediments. Size analysis statistics show influence of source material and processes acting on the sediment during transport and deposition. Rapid sediment accumulation is emphasised by poor sorting, and processed inferred from the sedimentary structures are confirmed by the grain size analyses of the same structures. Analysis of the attitude of large and small scale cross-stratification reveals a complex polymodal palaeocurrent pattern, as might be expected of shallow water to intertidal sequences. Although often bipolar-bimodal, the dominant sediment transport appears to have been from west to east, similar to the direction of current movement along the Wanganui coast today. Size and petrography of clasts from the conglomeratic horizons indicated sediment sources both from the central volcanic region of North Island and from the Mesozoic "greywackes" of the axial mountain ranges which were emergent and probably significantly elevated at the time when the sediments were accumulating. No volcanic debris was deposited with the Okehu Siltstone. The mineralogy of the sands points to the same sediment sources but also indicates that some metamorphic material was being introduced most likely from South Island. Part III of the thesis represents a pilot study undertaken to determine whether isotopic differences in fossil shell composition could be used to distinguish shells that grew in fully marine water from those that grew in less saline conditions. Carbon and oxygen isotope ratios were determined on shells from three formations whose environments had been adequately studied by paleontologists. The horisons chosen were the Waipuru Shellbed, the Tewkesbury Formation and the Tainui Shellbed. Agreement with the palaeontological evidence and thus distinction between the fully marine and the fresh water contaminated marine environments was possible with the technique.</p>


2021 ◽  
Author(s):  
◽  
Diane Seward

<p>The thesis comprises studies of the marine Pleistocene sediments of the Wanganui Basin, North Island, New Zealand. Part I deals with the chronology of the sediments and correlation of horizons within and outside the basin, by dating glass shards from tephra horizons using the fission-track method. Correlation to similar tephras from Hawke's Bay, to deep-sea cores taken 1000km east of New Zealand and to the central North Island volcanic district is attempted. These fission-track ages fill a dating gap that previously existed in the New Zealand marine Quaternary sequence. Thirteen tephras were examined in the Wanganui Basin and were found to range in age from 1.50 [plus or minus] 0.21m.y.B.P. (Ohingaiti Ash) to 0.28 [plus or minus] 0.05m.y.B.P. (uppermost Finnis Road Ash). These tephras record major rhyolitic eruptive phases in the central volcanic region. The most significant eruptive phase began 1.06 [plus or minus]0.16m.y.B.P. with the deposition of the Makirikiri Tuff sediments, continued to 0.88 [plus or minus]0.13m.y.B.P. and is tentatively associated with the older ignimbrites of the King Country, west of Lake Taupe. A volcanically quiet period followed when no volcanic glass was deposited in the sediments, until 0.74 [plus or minus] 0.09m.y.B.P. Several large eruptions then occurred between 0.74 and 0.28m.y.B.P. The age of the Plio-Pleistocene boundary, at the base of the Hautawan Stage in the Wanganui Basin is 1.87m.y.B.P. The age of the base of the Nukumaruan is 1.55m.y.B.P., the Okehuan, 1.06m.y.B.P., the Castleclifflan 0.45m.y.B.P., and the Hawera Series is less than 0.38m.y.B.P. Palaeomagnetic stratigraphy was determined for the upper Nukumaruan and lower Okehan sequence in the Rangitikei River. Viscous components of magnetism were removed from the samples by thermal demagnetising, extreme care being needed to obtain consistent results. Independent dates from the palaeomagnetic stratigraphy substantially confirm the fission-track dates. The Bruhnes-Matuyama boundary is clearly defined between the Rewa and Potaka Pumice Members (aged 0.74 and 0.61m.y.B.P. respectively) of the Kaimatira Pumice Send Formation. The Jaramillo event was not recognised and is probably represented in part of the sequence where sediments are too coarse and friable to yield palaeomagnetic cores. Part II deals with the detailed sedimentology of the lower Okehuan Stage sequence which is composed of two volcaniclastic formations, the Makirikiri Tuff and Kaimatira Pubmice Sand, separated by a non-volcaniclastic siltstone formation, the Okehu Siltstone. Interpretations of the Sedimentary structures in the Makirikiri Tuff and the Kaimatira Pumice Sand Formation confirm previous conclusions of shallow water deposition based on palaeontological evidence. Some structures also indicate the high rate of sediment accumulation during deposition of the volcancic sediments. Size analysis statistics show influence of source material and processes acting on the sediment during transport and deposition. Rapid sediment accumulation is emphasised by poor sorting, and processed inferred from the sedimentary structures are confirmed by the grain size analyses of the same structures. Analysis of the attitude of large and small scale cross-stratification reveals a complex polymodal palaeocurrent pattern, as might be expected of shallow water to intertidal sequences. Although often bipolar-bimodal, the dominant sediment transport appears to have been from west to east, similar to the direction of current movement along the Wanganui coast today. Size and petrography of clasts from the conglomeratic horizons indicated sediment sources both from the central volcanic region of North Island and from the Mesozoic "greywackes" of the axial mountain ranges which were emergent and probably significantly elevated at the time when the sediments were accumulating. No volcanic debris was deposited with the Okehu Siltstone. The mineralogy of the sands points to the same sediment sources but also indicates that some metamorphic material was being introduced most likely from South Island. Part III of the thesis represents a pilot study undertaken to determine whether isotopic differences in fossil shell composition could be used to distinguish shells that grew in fully marine water from those that grew in less saline conditions. Carbon and oxygen isotope ratios were determined on shells from three formations whose environments had been adequately studied by paleontologists. The horisons chosen were the Waipuru Shellbed, the Tewkesbury Formation and the Tainui Shellbed. Agreement with the palaeontological evidence and thus distinction between the fully marine and the fresh water contaminated marine environments was possible with the technique.</p>


2021 ◽  
Author(s):  
◽  
Wayne Phillip Richardson

<p>An ML. 5.4 earthquake and an associated sequence of smaller earthquakes, including foreshocks, were well recorded in 1977 by a network of 10 seismographs set for a microearthquake survey in the Bay of Plenty region, which is transitional between back-are spreading regions of the Havre Trough and the continental North Island. Upper crustal aftershock origins clustered and migrated within an area 7 km by 15 km elongated east-west. The aftershocks were relatively swarm-like, producing a b- value of 1.29 [plus or minus] 0.13, and were apparently of long sequence duration, with decay coefficient p = 0.67 [plus or minus] 0.03. A northeast-trending rupture fitted for the mainshock, originating close to where foreshocks were centred, and passing between tight concentrations of later aftershock activity to either side. Teleseismic waveforms, in addition to providing a 10.5 km estimate of focal depth, helped to constrain the solution of focal mechanism for the mainshock. The preferred solution is for mainly right-lateral slip on a northeast striking plane but with a normal component. The slip trend parallels the front of recent volcanism. Mechanisms for related events range from normal to strike slip, on parallel and intersecting planes, and are indicative of the complexity of geological structure where north-trending faults of the North Island shear belt meet with the front of recent volcanism. as well as of a prevailing traction across the volcanic front. The volcanic region is characterised by a low Poisson's ratio, suggested by the Wadati method to be v= 0.19 [plus or minus] 0.01 in contrast to v =0.27 [plus or minus] 0.01 for the greywacke region to the southeast; this difference is attributed to contrasting rock types and other conditions either side of the volcanic front. The multiplicity of earthquake sequences in the volcanic region indicates a high degree of heterogeneous structure. A low stress drop of 2.8 MPa inferred for the Matata mainshock suggests that the faulting occurs on pre-existing planes. Off-fault aftershocks occurred where the failure stress increased as a result of the mainshock rupture. A concurrent sequence of earthquakes originating near 50km depth indicated thrusting on the lithospheric plate interface underlying the North Island; thrusting on the interface apparently extends to about 70km depth, where the plates become decoupled. Oblique plate convergence and stick-slip motion on the weakly coupled interface provides the regional dextral shear component observed in the volcanic region for the Matata mainshock. An extensional component is therefore a necessary addition for the observed normal component of faulting, which predominated for the 1987 Edgecumbe mainshock. Wave mode conversions inferred for subcrustal earthquakes and the Matata sequence mainshock indicate that the Moho shallows from 28.5 km to 22 km northwestwards across the volcanic front, suggesting that new crust in the Bay of Plenty region is being created over a wide region rather than by active rifting along a sharp margin.</p>


2021 ◽  
Author(s):  
◽  
Wayne Phillip Richardson

<p>An ML. 5.4 earthquake and an associated sequence of smaller earthquakes, including foreshocks, were well recorded in 1977 by a network of 10 seismographs set for a microearthquake survey in the Bay of Plenty region, which is transitional between back-are spreading regions of the Havre Trough and the continental North Island. Upper crustal aftershock origins clustered and migrated within an area 7 km by 15 km elongated east-west. The aftershocks were relatively swarm-like, producing a b- value of 1.29 [plus or minus] 0.13, and were apparently of long sequence duration, with decay coefficient p = 0.67 [plus or minus] 0.03. A northeast-trending rupture fitted for the mainshock, originating close to where foreshocks were centred, and passing between tight concentrations of later aftershock activity to either side. Teleseismic waveforms, in addition to providing a 10.5 km estimate of focal depth, helped to constrain the solution of focal mechanism for the mainshock. The preferred solution is for mainly right-lateral slip on a northeast striking plane but with a normal component. The slip trend parallels the front of recent volcanism. Mechanisms for related events range from normal to strike slip, on parallel and intersecting planes, and are indicative of the complexity of geological structure where north-trending faults of the North Island shear belt meet with the front of recent volcanism. as well as of a prevailing traction across the volcanic front. The volcanic region is characterised by a low Poisson's ratio, suggested by the Wadati method to be v= 0.19 [plus or minus] 0.01 in contrast to v =0.27 [plus or minus] 0.01 for the greywacke region to the southeast; this difference is attributed to contrasting rock types and other conditions either side of the volcanic front. The multiplicity of earthquake sequences in the volcanic region indicates a high degree of heterogeneous structure. A low stress drop of 2.8 MPa inferred for the Matata mainshock suggests that the faulting occurs on pre-existing planes. Off-fault aftershocks occurred where the failure stress increased as a result of the mainshock rupture. A concurrent sequence of earthquakes originating near 50km depth indicated thrusting on the lithospheric plate interface underlying the North Island; thrusting on the interface apparently extends to about 70km depth, where the plates become decoupled. Oblique plate convergence and stick-slip motion on the weakly coupled interface provides the regional dextral shear component observed in the volcanic region for the Matata mainshock. An extensional component is therefore a necessary addition for the observed normal component of faulting, which predominated for the 1987 Edgecumbe mainshock. Wave mode conversions inferred for subcrustal earthquakes and the Matata sequence mainshock indicate that the Moho shallows from 28.5 km to 22 km northwestwards across the volcanic front, suggesting that new crust in the Bay of Plenty region is being created over a wide region rather than by active rifting along a sharp margin.</p>


2021 ◽  
Author(s):  
◽  
Timothy Andrew Stern

<p>Gravity and seismic refraction studies were undertaken in order to investigate the geological structure of the Central Volcanic Region. A detailed analysis of density determinations from bore-hole rock samples, three seismic refraction surveys and a spectral analysis of the magnetic anomaly field are described. Interpretation of the observed gravity anomaly fie ld for the Central Volcanic Region is initially undertaken by analytically separating the observed anomaly field into its regional and residual components; the almost entirely negative residual anomaly field is then interpreted in terms of varying thicknesses of near-surface, low-density volcanic rocks. At Mangakino and just west of Taupo, however, it is found that the calculated gravity anomaly effect of the seismically determined thickness of low-velocity, and hence low-density, volcanic rocks is less negative than the observed residuals; at both locations "secondary residuals" of about -200 μN/kg remain unexplained. Models are presented that account for these secondary residuals as being due to discrete volumes of low-density molten rhyolite emplaced within the seismic basement. The second method of gravity interpretation used in this study involves modelling all components of the observed gravity anomaly field . This necessitated giving consideration to both the gravity effect of the subducted Pacific plate and to seismic data bearing upon the variation of crustal thickness and mantle density throughout the central North Island. A gravity model for the central North Island is developed for which the important features are:  i) The crust of the Central Volcanic Region is deduced to be only about half the normal continental thickness, and underlying the crust is an "anomalous", low-density upper mantle. This finding from the gravity model is supported by the results of a previous study of upper mantle seismic velocities and from the interpretation of a longrange seismic refraction survey carried out within the Region. These seismic data indicate the depth to, and the velocity of the upper mantle beneath the Region to be 15 km and 7.4 km/s respectively. ii) The positive gravity anomalies that predominate over the western and northwestern North Island can largely be explained by gravity edge-effects associated with variations in the crustal thickness and mantle density within the back-arc areas of the North Island. The gravity model is interpreted as lending support for a previously made proposal that the Region is the site of asymmetric back-arc spreading, and that the crustal rocks now being created are transitional in character between typical oceanic and typical continental.</p>


Sign in / Sign up

Export Citation Format

Share Document