riptortus pedestris
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Junyong Song ◽  
Gisuk Lee ◽  
Jinkyo Jung ◽  
Jung-Kyung Moon ◽  
Sang-Gyu Kim
Keyword(s):  

2022 ◽  
Vol 12 ◽  
Author(s):  
Junbeom Lee ◽  
Wook Hyun Cha ◽  
Dae-Weon Lee

Thanatin is an antimicrobial peptide (AMP) generated by insects for defense against bacterial infections. In the present study, we performed cDNA cloning of thanatin and found the presence of multiple precursor proteins from the bean bug, Riptortus pedestris. The cDNA sequences encoded 38 precursor proteins, generating 13 thanatin isoforms. In the phylogenetic analysis, thanatin isoforms were categorized into two groups based on the presence of the membrane attack complex/perforin (MACPF) domain. In insect-bacterial symbiosis, specific substances are produced by the immune system of the host insect and are known to modulate the symbiont’s population. Therefore, to determine the biological function of thanatin isoforms in symbiosis, the expression levels of three AMP genes were compared between aposymbiotic insects and symbiotic R. pedestris. The expression levels of the thanatin genes were significantly increased in the M4 crypt, a symbiotic organ, of symbiotic insects upon systemic bacterial injection. Further, synthetic thanatin isoforms exhibited antibacterial activity against gut-colonized Burkholderia symbionts rather than in vitro-cultured Burkholderia cells. Interestingly, the suppression of thanatin genes significantly increased the population of Burkholderia gut symbionts in the M4 crypt under systemic Escherichia coli K12 injection. Overgrown Burkholderia gut symbionts were observed in the hemolymph of host insects and exhibited insecticidal activity. Taken together, these results suggest that thanatin of R. pedestris is a host-derived symbiotic factor and an AMP that controls the population of gut-colonized Burkholderia symbionts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weichuan Fu ◽  
Xingzhou Liu ◽  
Cong Rao ◽  
Rui Ji ◽  
Xiaoli Bing ◽  
...  

The damage of Riptortus pedestris is exceptional by leading soybean plants to keep green in late autumn. Identification of the salivary proteins is essential to understand how the pest-plant interaction occurs. Here, we have tried to identify them by a combination of proteomic and transcriptomic analyses. The transcriptomes of salivary glands from R. pedestris males, females and nymphs showed about 28,000 unigenes, in which about 40% had open reading frames (ORFs). Therefore, the predicted proteins in the transcriptomes with secretion signals were obtained. Many of the top 1,000 expressed transcripts were involved in protein biosynthesis and transport, suggesting that the salivary glands produce a rich repertoire of proteins. In addition, saliva of R. pedestris males, females and nymphs was collected and proteins inside were identified. In total, 155, 20, and 11 proteins were, respectively, found in their saliva. We have tested the tissue-specific expression of 68 genes that are likely to be effectors, either because they are homologs of reported effectors of other sap-feeding arthropods, or because they are within the top 1,000 expressed genes or found in the salivary proteomes. Their potential functions in regulating plant defenses were discussed. The datasets reported here represent the first step in identifying effectors of R. pedestris.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 753
Author(s):  
Hai-Jian Huang ◽  
Xiao-Tian Yan ◽  
Zhong-Yan Wei ◽  
Yi-Zhe Wang ◽  
Jian-Ping Chen ◽  
...  

The bean bug, Riptortus pedestris (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, R. pedestris secretes a mixture of salivary proteins, which play critical roles in the insect–plant interactions and may be responsible for staygreen-like syndromes. The present study aimed to identify the major salivary proteins in R. pedestris saliva by transcriptomic and proteomic approaches, and to screen the proteins that potentially induced plant defense responses. Altogether, 136 salivary proteins were identified, and a majority of them were involved in hydrolase and binding. Additionally, R. pedestris saliva contained abundant bug-specific proteins with unknown function. Transient expression of salivary proteins in Nicotiana benthamiana leaves identified that RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2 were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results will shed more light on the molecular mechanisms underlying the plant–insect interactions and are useful for pest management.


Author(s):  
Hai‐Jian Huang ◽  
Yu‐Xuan Ye ◽  
Zhuang‐Xin Ye ◽  
Xiao‐Tian Yan ◽  
Xin Wang ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Wenjing Li ◽  
Yu Gao ◽  
Yinglu Hu ◽  
Juhong Chen ◽  
Jinping Zhang ◽  
...  

The bean bug, Riptortus pedestris, is a major pest of soybeans. In order to assess the critical stages of soybean damage by R. pedestris, we tested the damage to soybeans at different growth stages (R2, R4, and R6) caused by five densities of R. pedestris (1, 2, 3, 4, and 5) through a field cage experiment. The results show that the R4 stage was the most sensitive stage in terms of suffering R. pedestris injury damage, followed by the R6 stage and then the R2 stage. The number of stay green leaves was 7.04 per plant, the abortive pod rate of the soybeans was 56.36%, and the abortive seed rate of the soybeans was 46.69%. The dry weight of the soybeans was 14.20 g at the R4 stage; these values of R4 were significantly higher than at the R2 and R6 stages. However, the dry weight of soybean seed was 4.27 g and the nutrient transfer rate was 27.01% in the R4 stage; these values were significantly lower than in the R2 and R6 stages. The number of stay green leaves, abortive pod rates, and abortive seed rates were all increased significantly with increasing pest density at each stage of soybean growth. However, the nutrient transfer rate was significantly decreased with the increase in the pest density. Soybean nutrition factors changed after they suffered R. pedestris injury; the lipid content of the soybean seed decreased and the lipid content of the soybean plant increased compared to controls, when tested with a density of five R. pedestris in the R4 stage. These results will be beneficial to the future management of R. pedestris in soybean fields.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 226
Author(s):  
Siying Fu ◽  
Yujie Duan ◽  
Siqi Wang ◽  
Yipeng Ren ◽  
Wenjun Bu

Riptortus pedestris (Hemiptera: Alydidae) is a major agricultural pest in East Asia that causes considerable economic losses to the soybean crop each year. However, the molecular mechanisms governing the growth and development of R. pedestris have not been fully elucidated. In this study, the Illumina HiSeq6000 platform was employed to perform de novo transcriptome assembly and determine the gene expression profiles of this species across all developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs, and adults. In this study, a total of 60,058 unigenes were assembled from numerous raw reads, exhibiting an N50 length of 2126 bp and an average length of 1199 bp, and the unigenes were annotated and classified with various databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Furthermore, various numbers of differentially expressed genes (DEGs) were calculated through pairwise comparisons of all life stages, and some of these DEGs were associated with immunity, metabolism, and development by GO and KEGG enrichment. In addition, 35,158 simple sequence repeats (SSRs) and 715,604 potential single nucleotide polymorphisms (SNPs) were identified from the seven transcriptome libraries of R. pedestris. Finally, we identified and summarized ten wing formation-related signaling pathways, and the molecular properties and expression levels of five wing development-related genes were analyzed using quantitative real-time PCR for all developmental stages of R. pedestris. Taken together, the results of this study may establish a foundation for future research investigating developmental processes and wing formation in hemimetabolous insects and may provide valuable data for pest control efforts attempting to reduce the economic damage caused by this pest.


2021 ◽  
Vol 46 (1) ◽  
pp. 60-67
Author(s):  
Shouya Naruse ◽  
Mayuko Ogino ◽  
Takao Nakagawa ◽  
Yoko Yasuno ◽  
Akiya Jouraku ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document