membrane attack complex
Recently Published Documents


TOTAL DOCUMENTS

570
(FIVE YEARS 121)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
pp. 1-12
Author(s):  
Christof Weinstock

In 2014, the membrane-bound protein CD59 became a blood group antigen. CD59 has been known for decades as an inhibitor of the complement system, located on erythrocytes and on many other cell types. In paroxysmal nocturnal haemoglobinuria (PNH), a stem cell clone with acquired deficiency to express GPI-anchored molecules, including the complement inhibitor CD59, causes severe and life-threatening disease. The lack of CD59, which is the only membrane-bound inhibitor of the membrane attack complex, contributes a major part of the intravascular haemolysis observed in PNH patients. This crucial effect of CD59 in PNH disease prompted studies to investigate its role in other diseases. In this review, the role of CD59 in inflammation, rheumatic disease, and age-related macular degeneration is investigated. Further, the pivotal role of CD59 in PNH and congenital CD59 deficiency is reviewed.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010226
Author(s):  
Carolina De Marco Verissimo ◽  
Heather L. Jewhurst ◽  
József Dobó ◽  
Péter Gál ◽  
John P. Dalton ◽  
...  

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


2022 ◽  
Vol 12 ◽  
Author(s):  
Junbeom Lee ◽  
Wook Hyun Cha ◽  
Dae-Weon Lee

Thanatin is an antimicrobial peptide (AMP) generated by insects for defense against bacterial infections. In the present study, we performed cDNA cloning of thanatin and found the presence of multiple precursor proteins from the bean bug, Riptortus pedestris. The cDNA sequences encoded 38 precursor proteins, generating 13 thanatin isoforms. In the phylogenetic analysis, thanatin isoforms were categorized into two groups based on the presence of the membrane attack complex/perforin (MACPF) domain. In insect-bacterial symbiosis, specific substances are produced by the immune system of the host insect and are known to modulate the symbiont’s population. Therefore, to determine the biological function of thanatin isoforms in symbiosis, the expression levels of three AMP genes were compared between aposymbiotic insects and symbiotic R. pedestris. The expression levels of the thanatin genes were significantly increased in the M4 crypt, a symbiotic organ, of symbiotic insects upon systemic bacterial injection. Further, synthetic thanatin isoforms exhibited antibacterial activity against gut-colonized Burkholderia symbionts rather than in vitro-cultured Burkholderia cells. Interestingly, the suppression of thanatin genes significantly increased the population of Burkholderia gut symbionts in the M4 crypt under systemic Escherichia coli K12 injection. Overgrown Burkholderia gut symbionts were observed in the hemolymph of host insects and exhibited insecticidal activity. Taken together, these results suggest that thanatin of R. pedestris is a host-derived symbiotic factor and an AMP that controls the population of gut-colonized Burkholderia symbionts.


2022 ◽  
Vol 9 (1) ◽  
pp. e000576
Author(s):  
Shudan Wang ◽  
Ming Wu ◽  
Luis Chiriboga ◽  
Briana Zeck ◽  
Beatrice Goilav ◽  
...  

IntroductionTreatment failures for lupus nephritis (LN) are high with 10%–30% of patients progressing to end-stage renal disease (ESRD) within 10 years. Interstitial fibrosis/tubular atrophy (IFTA) is a predictor of progression to ESRD. Prior studies suggest that tubulointerstitial injury secondary to proteinuria in LN is mediated by complement activation in the tubules, specifically through the membrane attack complex (MAC). This study aimed to investigate the associations between tubular MAC deposition with IFTA and proteinuria.MethodsIn this cross-sectional study, LN kidney biopsies were assessed for MAC deposition by staining for Complement C9, a component of the MAC. Chromogenic immunohistochemistry was performed on paraffin-embedded human renal biopsy sections using unconjugated, murine anti-human Complement C9 (Hycult Biotech, clone X197). Tubular C9 staining intensity was analysed as present versus absent. IFTA was defined as minimal (<10%), mild (10%–24%), moderate (25%–50%) and severe (>50%).ResultsRenal biopsies from 30 patients with LN were studied. There were 24 (80%) female sex, mean age (SD) was 33 (12) years old and 23 (77%) had pure/mixed proliferative LN. Tubular C9 staining was present in 7 (23%) biopsies. 27 patients had minimal-to-mild IFTA and 3 patients had moderate IFTA. Among the C9 + patients, 3 (43%) had moderate IFTA as compared with none in the C9- group, p=0.009. C9 + patients had higher median (IQR) proteinuria as compared with C9- patients: 6.2 g (3.3–13.1) vs 2.4 g (1.3–4.6), p=0.001 at the time of biopsy. There was no difference in estimated glomerular filtration rate (eGFR) between the C9 + and C9- groups.ConclusionThis study demonstrated that tubular MAC deposition is associated with higher degree of IFTA and proteinuria, which are predictors of progression to ESRD. These results suggest that tubular MAC deposition may be useful in classification of LN. Understanding the role of complement in tubulointerstitial injury will also identify new avenues for LN treatment.


Author(s):  
Lisa A Lewis ◽  
Sunita Gulati ◽  
Wioleta M Zelek ◽  
B Paul Morgan ◽  
Wen-Chao Song ◽  
...  

Abstract A safe and effective vaccine against multidrug-resistant gonorrhea is urgently needed. An experimental peptide vaccine called TMCP2 that mimics an oligosaccharide epitope in gonococcal lipooligosaccharide, when adjuvanted with glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), elicits bactericidal IgG and hastens clearance of gonococci in the mouse vaginal colonization model. Here, we show that efficacy of TMCP2 requires an intact terminal complement pathway, evidenced by loss of activity in C9  -/- mice or when C7 function was blocked. In conclusion, TMCP2 vaccine efficacy in the mouse vagina requires membrane attack complex. Serum bactericidal activity may serve as a correlate of protection for TMCP2.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Prabhat K. Mallik ◽  
Kimi Nishikawa ◽  
Pramit Mallik ◽  
Hua Shi

Unlike microbes that infect the human body, cancer cells are descended from normal cells and are not easily recognizable as “foreign” by the immune system of the host. However, if the malignant cells can be specifically earmarked for attack by a synthetic “designator”, the powerful effector mechanisms of the immune response can be conscripted to treat cancer. To implement this strategy, we have been developing aptamer-derived molecular adaptors to invoke synthetic immune responses against cancer cells. Here we describe multi-valent aptamers that simultaneously bind target molecules on the surface of cancer cells and an activated complement protein, which would tag the target molecules and their associated cells as “foreign” and trigger multiple effector mechanisms. Increased deposition of the complement proteins on the surface of cancer cells via aptamer binding to membrane targets could induce the formation of the membrane attack complex or cytotoxic degranulation by phagocytes and natural killer cells, thereby causing irreversible destruction of the targeted cells. Specifically, we designed and constructed a bi-functional aptamer linking EGFR and C3b/iC3b, and used it in a cell-based assay to cause lysis of MDA-MB-231 and BT-20 breast cancer cells, with either human or mouse serum as the source of complement factors.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Candace R. Fox ◽  
Griffith D. Parks

Little is known about the role of complement (C’) in infections with highly prevalent circulating human coronaviruses such as OC43, a group of viruses of major public health concern. Treatment of OC43-infected human lung cells with human serum resulted in C3 deposition on their surfaces and generation of C5a, indicating robust C’ activation. Real-time cell viability assays showed that in vitro C’-mediated lysis of OC43 infected cells requires C3, C5 and C6 but not C7, and was substantially delayed as compared to rapid C’-mediated killing of parainfluenza virus type 5 (PIV5)-infected cells. In cells co-infected with OC43 and PIV5, C’-mediated lysis was delayed, similar to OC43 infected cells alone, suggesting that OC43 infection induced dominant inhibitory signals. When OC43-infected cells were treated with human serum, their cell surfaces contained both Vitronectin (VN) and Clusterin (CLU), two host cell C’ inhibitors that can alter membrane attack complex (MAC) formation and C’-mediated killing. VN and CLU were not bound to OC43-infected cells after treatment with antibody-depleted serum. Reconstitution experiments with purified IgG and VN showed that human antibodies are both necessary and sufficient for VN recruitment to OC43-infected lung cells–novel findings with implications for CoV pathogenesis.


2021 ◽  
Vol 22 (24) ◽  
pp. 13647
Author(s):  
Akash Shah ◽  
Uday Kishore ◽  
Abhishek Shastri

Alzheimer’s disease is a type of dementia characterized by problems with short-term memory, cognition, and difficulties with activities of daily living. It is a progressive, neurodegenerative disorder. The complement system is an ancient part of the innate immune system and comprises of more than thirty serum and membrane-bound proteins. This system has three different activating pathways and culminates into the formation of a membrane attack complex that ultimately causes target cell lysis (usually pathogens) The complement system is involved in several important functions in the central nervous system (CNS) that include neurogenesis, synaptic pruning, apoptosis, and neuronal plasticity. Here, we discuss how the complement system is involved in the effective functioning of CNS, while also contributing to chronic neuroinflammation leading to neurodegenerative disorders such as Alzheimer’s disease. We also discuss potential targets in the complement system for stopping its harmful effects via neuroinflammation and provide perspective for the direction of future research in this field.


2021 ◽  
Author(s):  
Dennis J. Doorduijn ◽  
Marie V. Lukassen ◽  
Marije F.L. van 't Wout ◽  
Vojtech Franc ◽  
Maartje Ruyken ◽  
...  

The Membrane Attack Complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC is formed when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC, or terminal complement complex (TCC)) are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. Both the increase in C5 conversion and sMAC generation were linked to the expression of lipopolysaccharide (LPS) O-Antigen in the bacterial outer membrane. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Release of MAC precursors from bacteria induced lysis of bystander human erythrocytes in the absence of other serum components. However, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this bystander lysis. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to 3 copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013176
Author(s):  
Jantima Tanboon ◽  
Michio Inoue ◽  
Yoshihiko Saito ◽  
Hisateru Tachimori ◽  
Shinichiro Hayashi ◽  
...  

Background and Objectives:Discoveries of dermatomyositis specific antibodies (DMSAs) in dermatomyositis patients raised awareness of various myopathological features among antibody subtypes. However, only perifascicular atrophy and perifascicular myxovirus resistant protein A (MxA) overexpression were officially included as the definitive pathological criteria for dermatomyositis classification. We aimed to demonstrate myopathological features in MxA-positive dermatomyositis to determine characteristic myopathological features in different DMSA subtypes.Method:We performed a retrospective pathology review of muscle biopsies of dermatomyositis patients diagnosed between January 2009 and December 2020 in a tertiary laboratory for muscle diseases. We included all muscle biopsies with sarcoplasmic expression for MxA and seropositivity for DMSAs. MxA-positive muscle biopsies which tested negative for all DMSAs were included as seronegative dermatomyositis. We evaluated histological features stratified according to four pathology domains (muscle fiber, inflammatory, vascular, and connective tissue) and histological features of interest by histochemistry, enzyme histochemistry, and immunohistochemical study commonly used in the diagnosis of inflammatory myopathy. We performed ultrastructural studies of 54 available specimens.Result:A total of 256 patients were included. Of these, 249 patients were positive for one of the five DMSAs (seropositive patients: 87 anti-TIF1-γ; 40 anti-Mi-2; 29 anti-MDA5; 83 anti-NXP-2; and 10 anti-SAE DM) and 7 patients were negative for all five DMSAs (seronegative patients). Characteristic myopathological features in each DMSA subtype were as follows: anti-TIF1-γ with vacuolated/punched out fibers (64.7%, P<.001) and perifascicular enhancement in HLA-ABC stain (75.9%, P<.001); anti-Mi-2 with prominent muscle fiber damage (score 4.8±2.1, P<.001), inflammatory cell infiltration (score 8.0±3.0, P=.002), perifascicular atrophy (67.5%, P=.02), perifascicular necrosis (52.5%, P<.001), increased perimysial alkaline phosphatase activity (70.0%, P<.001), central necrotic peripheral regenerating fibers (45.0%, P<.001), and sarcolemmal membrane attack complex deposition (67.5%, P<.001); anti-MDA5 with scattered/diffuse staining pattern of MxA (65.5%, P<.001) with less muscle pathology and inflammatory features; anti-NXP2 with microinfarction (26.5%, P<.001); and anti-SAE and seronegative DM with HLA-DR expression (50.0%, P=.02 and 57.1%, P=.02, respectively).Discussion:We described a comprehensive serological-pathological correlation of DM primarily using MxA expression as an inclusion criterion. In our study, DMSAs were associated with distinctive myopathological features suggesting different underlying pathobiological mechanisms in each subtype.


Sign in / Sign up

Export Citation Format

Share Document