color distortion
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 1)

J ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 15-34
Author(s):  
Ho-Sang Lee

A duststorm image has a reddish or yellowish color cast. Though a duststorm image and a hazy image are obtained using the same process, a hazy image has no color distortion as it has not been disturbed by particles, but a duststorm image has color distortion owing to an imbalance in the color channel, which is disturbed by sand particles. As a result, a duststorm image has a degraded color channel, which is rare in certain channels. Therefore, a color balance step is needed to enhance a duststorm image naturally. This study goes through two steps to improve a duststorm image. The first is a color balance step using singular value decomposition (SVD). The singular value shows the image’s diversity features such as contrast. A duststorm image has a distorted color channel and it has a different singular value on each color channel. In a low-contrast image, the singular value is low and vice versa. Therefore, if using the channel’s singular value, the color channels can be balanced. Because the color balanced image has a similar feature to the haze image, a dehazing step is needed to improve the balanced image. In general, the dark channel prior (DCP) is frequently applied in the dehazing step. However, the existing DCP method has a halo effect similar to an over-enhanced image due to a dark channel and a patch image. According to this point, this study proposes to adjustable DCP (ADCP). In the experiment results, the proposed method was superior to state-of-the-art methods both subjectively and objectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Min Qi ◽  
Shanshan Cui ◽  
Qianmin Du ◽  
Yuelei Xu ◽  
David F. McAllister

Stereoscopic display is the means of showing scenes in Virtual Reality (VR). As a type of stereo images, anaglyphs can be displayed not only on the screen, but are currently the only solution of stereo images that can be displayed on paper. However, its deficiencies, like retinal rivalry and color distortion, could cause visual fatigue. To address this issue, an algorithm is proposed for anaglyph generation. Unlike previous studies only considering one aspect, it considers both retinal rivalry and color distortion at the same time. The algorithm works in the CIE L ∗ a ∗ b ∗ color space and focuses on matching the perceptual color attributes especially the hue, rather than directly minimizes the sum of the distances between the perceived anaglyph color and the stereo image pair. In addition, the paper builds a relatively complete framework to generate anaglyphs so that it is more controllable to adjust the parameters and choose the appropriate process. The subjective tests are conducted to compare the results with several techniques which generate anaglyphs including empirical methods and computing methods. Results show that the proposed algorithm has a good performance.


Author(s):  
Zhenjian Yang ◽  
Jiamei Shang ◽  
Zhongwei Zhang ◽  
Yan Zhang ◽  
Shudong Liu

Traditional image dehazing algorithms based on prior knowledge and deep learning rely on the atmospheric scattering model and are easy to cause color distortion and incomplete dehazing. To solve these problems, an end-to-end image dehazing algorithm based on residual attention mechanism is proposed in this paper. The network includes four modules: encoder, multi-scale feature extraction, feature fusion and decoder. The encoder module encodes the input haze image into feature map, which is convenient for subsequent feature extraction and reduces memory consumption; the multi-scale feature extraction module includes residual smoothed dilated convolution module, residual block and efficient channel attention, which can expand the receptive field and extract different scale features by filtering and weighting; the feature fusion module with efficient channel attention adjusts the channel weight dynamically, acquires rich context information and suppresses redundant information so as to enhance the ability to extract haze density image of the network; finally, the encoder module maps the fused feature nonlinearly to obtain the haze density image and then restores the haze free image. The qualitative and quantitative tests based on SOTS test set and natural haze images show good objective and subjective evaluation results. This algorithm improves the problems of color distortion and incomplete dehazing effectively.


Author(s):  
Qi Mu ◽  
Xinyue Wang ◽  
Yanyan Wei ◽  
Zhanli Li

AbstractIn the state of the art, grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination. As these methods are applied to each RGB channel independently, imbalanced inter-channel enhancements (color distortion) can often be observed in the resulting images. On the other hand, images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring, halos, and over-enhancement. To address these problems, an improved RGB color image enhancement method is proposed for images captured under non-uniform illumination or in poor visibility, based on weighted guided image filtering (WGIF). Unlike the conventional retinex algorithm and its variants, WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component; it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization. To limit color distortion, RGB images are first converted to HSI (hue, saturation, intensity) color space, where only the intensity channel is enhanced, before being converted back to RGB space by a linear color restoration algorithm. Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination, with better visual quality and objective evaluation scores than from comparator algorithms. It is also efficient due to use of a linear color restoration algorithm.


Author(s):  
Tannistha Pal

In recent times, there has been a tremendous progress in image dehazing for computer vision applications, while the sky region processed by these algorithms tends to degrade by noise and color distortion. In this paper, an improved dark channel prior algorithm is proposed which detects the sky region first and divides the image into sky region and non-sky region and then estimates the transmission of two parts separately, followed by combining with refining step. The proposed algorithm also accurately corrects the transmission of the sky region to avoid noise and color distortion. Experimental results show a greater quality improvement in the output images than the existing strategies.


2021 ◽  
Vol 9 (2) ◽  
pp. 225
Author(s):  
Farong Gao ◽  
Kai Wang ◽  
Zhangyi Yang ◽  
Yejian Wang ◽  
Qizhong Zhang

In this study, an underwater image enhancement method based on local contrast correction (LCC) and multi-scale fusion is proposed to resolve low contrast and color distortion of underwater images. First, the original image is compensated using the red channel, and the compensated image is processed with a white balance. Second, LCC and image sharpening are carried out to generate two different image versions. Finally, the local contrast corrected images are fused with sharpened images by the multi-scale fusion method. The results show that the proposed method can be applied to water degradation images in different environments without resorting to an image formation model. It can effectively solve color distortion, low contrast, and unobvious details of underwater images.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 416
Author(s):  
Changmeng Peng ◽  
Luting Cai ◽  
Xiaoyang Huang ◽  
Zhizhong Fu ◽  
Jin Xu ◽  
...  

It is a challenge to transmit and store the massive visual data generated in the Visual Internet of Things (VIoT), so the compression of the visual data is of great significance to VIoT. Compressing bit-depth of images is very cost-effective to reduce the large volume of visual data. However, compressing the bit-depth will introduce false contour, and color distortion would occur in the reconstructed image. False contour and color distortion suppression become critical issues of the bit-depth enhancement in VIoT. To solve these problems, a Bit-depth Enhancement method with AUTO-encoder-like structure (BE-AUTO) is proposed in this paper. Based on the convolution-combined-with-deconvolution codec and global skip of BE-AUTO, this method can effectively suppress false contour and color distortion, thus achieving the state-of-the-art objective metric and visual quality in the reconstructed images, making it more suitable for bit-depth enhancement in VIoT.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


Sign in / Sign up

Export Citation Format

Share Document