isolated arteries
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 2)

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1552
Author(s):  
Jozef Torok ◽  
Anna Zemancikova ◽  
Zuzana Valaskova ◽  
Peter Balis

The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome.


Author(s):  
Camilla F. Wenceslau ◽  
Cameron G. McCarthy ◽  
Scott Earley ◽  
Sarah K. England ◽  
Jessica A. Filosa ◽  
...  

The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system, and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By utilizing this document, vascular physiologists will have consistency amongst methodological approaches, producing more reliable and reproducible results.


Author(s):  
Vladimir N. Yartsev

Although vasodilatation evoked by acidosis at normal body temperature is well known, the reports regarding effect of acidosis on the reactivity of the isolated arteries at low temperatures are non-existent. This study tested the hypothesis that the inhibitory effect of acidosis on the neurogenic vasoconstriction may be increased by cooling. Using wire myography, we recorded the neurogenic contraction of the rat tail artery segments to the electrical field stimulation in the absence and in the presence of 0.03-10.0 µmol/L noradrenaline. The experiments were conducted at 37oC or 25oC and pH 7.4 or 6.6 which was decreased by means of CO2. Noradrenaline at concentration of 0.03-0.1 µmol/L significantly potentiated the neurogenic vasoconstriction at 25oC, and the potentiation was not inhibited by acidosis. Contrary to our hypothesis, acidosis at a low temperature did not affect the noradrenaline-induced tone and significantly increased the neurogenic contraction of the artery segments in the absence and presence of noradrenaline. These effects of acidosis were partly dependent on the endothelium and L-type Ca2+ channels activation. The phenomenon described for the first time might be of importance for the reduction in the heat loss by virtue of decrease in the subcutaneous blood flow at low ambient temperatures.


Author(s):  
Jaqueline K. Limberg ◽  
Rogerio Nogueira Soares ◽  
Gavin Power ◽  
Jennifer L. Harper ◽  
James A. Smith ◽  
...  

Herein we report in a sample of healthy young men (n=14) and women (n=12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized this prominent peripheral vasodilation is possibly due to an ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n=9) and women (n=7) that systemic infusion of insulin blunts sympathetically-mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasodilation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.


2020 ◽  
Vol 319 (1) ◽  
pp. H162-H170 ◽  
Author(s):  
Jacqueline K. Limberg ◽  
James A. Smith ◽  
Rogerio N. Soares ◽  
Jennifer L. Harper ◽  
Keeley N. Houghton ◽  
...  

We examined the role of sympathetic activation in restraining vasodilatory responses to hyperinsulinemia and sustaining blood pressure in healthy adults. Data are reported from two separate experimental protocols in humans and one experimental protocol in isolated arteries from mice. Contrary to our hypothesis, the present findings support the idea that during hyperinsulinemia, a sympathetically mediated increase in cardiac output, rather than restraint of peripheral vasodilation, is the principal contributor to the maintenance of systemic blood pressure.


2020 ◽  
Vol 318 (4) ◽  
pp. R669-R676 ◽  
Author(s):  
Yang Chen ◽  
Jacob J. Schaefer ◽  
Seethalakshmi R. Iyer ◽  
Gerald E. Harders ◽  
Shuchong Pan ◽  
...  

Based on the cardiac hormone atrial natriuretic peptide (ANP) and its seminal role in blood pressure (BP) homeostasis, we investigated the chronic BP lowering actions of a novel ANP analog currently entering clinical trials for hypertension. Previous reports demonstrate that this analog MANP activates the guanylyl cyclase A receptor (GC-A) and results in more potent biological actions compared with ANP; thus, it may represent a new therapeutic drug for hypertension. A major goal of this study was to establish that chronic subcutaneous delivery of MANP is feasible and hypotensive together with cGMP effects. We investigated the BP-lowering and cGMP-activating actions of acute and chronic subcutaneous delivery in normal and hypertensive rats. Furthermore, we explored vascular mechanisms of MANP in human aortic smooth muscle cells (HASMC) and ex vivo in isolated arteries. In normal rats with a single subcutaneous injection, MANP promoted robust dose-dependent BP-lowering actions and natriuresis, together with cGMP activation. Most importantly in hypertensive rats, once-a-day subcutaneous injection of MANP for 7 days induced cGMP elevation and long-term BP reduction compared with vehicle. Mechanistically, in HASMC, MANP activated cGMP and attenuated angiotensin II-mediated increases in intracellular Ca2+ levels while directly vasorelaxing arterial rings. Our study demonstrates for the first time the effectiveness of subcutaneous administration of MANP for 7 days and provides innovative, vascular mechanisms of BP regulation supporting its continued development as a novel therapeutic for hypertension.


2020 ◽  
Vol 23 ◽  
pp. 101481
Author(s):  
Amanda Roggia Ruviaro ◽  
Paula de Paula Menezes Barbosa ◽  
Eduardo Costa Alexandre ◽  
Alberto Fernando Oliveira Justo ◽  
Edson Antunes ◽  
...  

2019 ◽  
Vol 317 (5) ◽  
pp. H1157-H1165 ◽  
Author(s):  
Humberto Morales-Loredo ◽  
Adelaeda Barrera ◽  
Joshua M. Garcia ◽  
Carolyn E. Pace ◽  
Jay S. Naik ◽  
...  

Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [β-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg−1·min−1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline −1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline −0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg−1·min−1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone. NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.


2019 ◽  
Vol 6 ◽  
Author(s):  
Dmitry Tsvetkov ◽  
Evgeniy Kolpakov ◽  
Mario Kassmann ◽  
Rudolf Schubert ◽  
Maik Gollasch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document