organic cation
Recently Published Documents


TOTAL DOCUMENTS

1530
(FIVE YEARS 285)

H-INDEX

99
(FIVE YEARS 11)

2022 ◽  
Vol 203 ◽  
pp. 111090
Author(s):  
Haoyan Zheng ◽  
Pei Liang ◽  
Alexander A. Levin ◽  
Pavel N. Brunkov ◽  
Wei Hu ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 914
Author(s):  
Lorena Pochini ◽  
Michele Galluccio ◽  
Mariafrancesca Scalise ◽  
Lara Console ◽  
Gilda Pappacoda ◽  
...  

The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chao Han ◽  
Juan Zheng ◽  
Fengyi Wang ◽  
Qingyang Lu ◽  
Qingfa Chen ◽  
...  

Organic cation transporter 2 (OCT2), encoded by the SLC22A2 gene, is the main cation transporter on the basolateral membrane of proximal tubular cells. OCT2 facilitates the entry step of the vectorial transport of most cations from the peritubular space into the urine. OCT2 downregulation in kidney disease models is apparent, yet not clear from a mechanistic vantage point. The aim of this study was to explore the role of inflammation, a common thread in kidney disease, and NF-kB in OCT2 modulation and tubular secretion. Among the OCTs, OCT2 was found consistently downregulated in the kidney of rats with chronic kidney disease (CKD) or acute kidney injury (AKI) and in patients diagnosed with CKD, and it was associated with the upregulation of TNFα renal expression. Exposure to TNFα reduced the expression and function of OCT2 in primary renal proximal tubule epithelial cells (RPTEC). Silencing or pharmacological inhibition of NF-kB rescued the expression of OCT2 in the presence of TNFα, indicating that OCT2 repression was NF-kB-dependent. In silico prediction coupled to gene reporter assay demonstrated the presence of at least one functional NF-kB cis-element upstream the transcription starting site of the SLC22A2 gene. Acute inflammation triggered by lipopolysaccharide injection induced TNFα expression and the downregulation of OCT2 in rat kidney. The inflammation did reduce the active secretion of the cation Rhodamine 123, with no impairment of the glomerular filtration. In conclusion, the NF-kB pathway plays a major role in the transcriptional regulation of OCT2 and, in turn, in the overall renal secretory capacity.


Author(s):  
Sharon E. Scott ◽  
Joseph P. Fernandez ◽  
Christopher M. Hadad ◽  
Allison A. MacKay

2022 ◽  
Vol 145 ◽  
pp. 112489
Author(s):  
I-Hsin Lin ◽  
Ling Yang ◽  
Jeffrey W. Dalley ◽  
Tung-Hu Tsai

Author(s):  
Yifei Yue ◽  
Shengnan Liu ◽  
Baohua Zhang ◽  
Zhong-Min Su ◽  
Dongxia Zhu

All-inorganic perovskites (AIP) with three primary colors emission are all-important for AIP application in many field. However, poor spectral stability seriously hinders the development of blue-emission AIP. Here, we achieved...


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Masato Kobayashi ◽  
Asuka Mizutani ◽  
Yuka Muranaka ◽  
Kodai Nishi ◽  
Hisakazu Komori ◽  
...  

Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.


Sign in / Sign up

Export Citation Format

Share Document