seismic liquefaction
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 2)

Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 460-491
Author(s):  
Giovanni Ciardi ◽  
Giovanni Vannucchi ◽  
Claudia Madiai

Colloidal silica (CS) is a kind of nanomaterial used in soil/rock grouting techniques in different branches of civil engineering. Many studies have recently been performed to investigate the potential of CS in improving the mechanical behavior of cohesionless soils and mitigating the risk of seismic liquefaction in urbanized areas. CS grout is chemically and biologically inert and, when injected into a subsoil, it can form a silica gel and stabilize the desired soil layer, thus representing an attractive, environmentally friendly alternative to standard chemical grouting techniques. This paper firstly describes the characteristics of CS grout, the gelation process and the main features of the behavior of the pure gelled material. The grout delivery mechanisms through porous media are then explained, pointing out the crucial issues for practical application of CS grouting. All the grouting-induced effects on the soil behavior, which have been investigated by laboratory tests on small-sized soil elements, are reviewed, including the modifications to soil strength and stiffness under both static and seismic loading conditions, to soil compressibility and hydraulic conductivity. Published results from physical model tests and in situ applications are also presented. Finally, some aspects related to the mechanism of soil improvement are discussed. A critical discussion of each topic is presented, drawing particular attention to the controversial or not yet fully examined aspects to which future research on colloidal silica grouting should be directed.


2021 ◽  
Vol 150 ◽  
pp. 106940
Author(s):  
Xiaoli Xie ◽  
Bin Ye ◽  
Teng Zhao ◽  
Xiaoqing Feng ◽  
Feng Zhang

GeoHazards ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 153-171
Author(s):  
Prabin Acharya ◽  
Keshab Sharma ◽  
Indra Prasad Acharya

Kathmandu Valley lies in an active tectonic zone, meaning that earthquakes are common in the region. The most recent was the Gorkha Nepal earthquake, measuring 7.8 Mw. Past earthquakes caused soil liquefaction in the valley with severe damages and destruction of existing critical infrastructures. As for such infrastructures, the road network, health facilities, schools and airports are considered. This paper presents a liquefaction susceptibility map. This map was obtained by computing the liquefaction potential index (LPI) for several boreholes with SPT measurements and clustering the areas with similar values of LPI. Moreover, the locations of existing critical infrastructures were reported on this risk map. Therefore, we noted that 42% of the road network and 16% of the airport area are in zones of very high liquefaction susceptibility, while 60%, 54%, and 64% of health facilities, schools and colleges are in very high liquefaction zones, respectively. This indicates that most of the critical facilities in the valley are at serious risk of liquefaction during a major earthquake and therefore should be retrofitted for their proper functioning during such disasters.


2021 ◽  
Author(s):  
Achilleas Papadimitriou ◽  
Nikoletta Tsepelidou ◽  
Alkis Sideris ◽  
Anastasia Pavlopoulou ◽  
Vaios Katsoularis

<p>The large majority of existing studies of seismic liquefaction effects on structures considers them isolated, i.e., far from other structures. The same holds for design methods for liquefaction mitigation techniques. Hence, there is very little consideration for structure-soil-structure-interaction (SSSI) effects that appear unavoidable in urban environments. This paper explores numerically these SSSI effects for structures on surface foundations by performing fully coupled non-linear dynamic analyses with the finite difference method (FLAC) and a state-of-the-art constitutive model (NTUA-SAND) for the liquefaction response of loose, saturated granular soils. It shows that SSSI effects may prove both beneficial (e.g., settlement reduction) and detrimental (e.g., tilt apparition) depending on the dimensions, distance and static loading of the neighboring structures. These SSSI effects become more complex when ground improvement methods are used in one of the structures, but not its neighbors. By considering three alternative types of ground improvement that have a completely different rationale (perimetric walls, colloidal silica grouting, gravel columns), this paper also shows numerically that, regardless of its type, ground improvement in one structure may potentially prove detrimental to its neighboring unimproved structures (e.g., increase of tilt).</p>


2021 ◽  
Author(s):  
Rose Line Spacagna ◽  
Massimo Cesarano ◽  
Stefania Fabozzi ◽  
Edoardo Peronace ◽  
Attilio Porchia ◽  
...  

<p>The Seismic Microzonation studies (SMs), promoted all over the Italian territory by the Department of Civil Protection, provide fundamental knowledge of the subsoil response in seismic conditions at the urban scale. Amplification phenomena related to lithostratigraphic and morphological characteristics, instabilities and permanent deformations activated by the earthquake, are highlighted in hazard maps produced at increasing reliability levels (level 1 to 3 of SM). In particular, zones prone to liquefaction instability are firstly identified following the predisposing factors, such as geological and geotechnical characteristics and seismicity. The robustness of the definition of these areas is strongly correlated to the availability and the spatial distribution of surveys. Moreover, the typology and quality of the investigations considerably influence the method of analysis and the degree of uncertainty of the results.</p><p>This work aims to establish an updated procedure of the actual SM guidelines and integrates recent research activities at different levels of SMs, to improve the hazard maps accuracy in terms of liquefaction susceptibility. For the scope, the case of the Calabria region in the south of Italy, well known for the high level of seismicity, was studied. At a regional scale, the base-level analysis was implemented for a preliminary assessment of the Attention Zones (AZ), potentially susceptible to liquefaction. The predisposing factors were implemented at a large scale, taking advantage of geostatistical tools to quantify uncertainties and filter inconsistent data. The regional-scale analysis allowed to highlight areas prone to liquefaction and effectively addressed the subsequent level of analysis. At a local scale, the quantitative evaluation of the liquefaction potential was assessed using simplified methods, integrating data from different survey types (CPT, SPT, Down-Hole, Cross-Hole, MASW) available in SM database. The definition of Susceptibility Zones (SZ) was provided considering additional indexes, combining the results obtained from different surveys typologies and quantifying the uncertainty due to the limited data availability with geostatistical methods. The analyses at the regional and municipality scale were matched with seismic liquefaction evidence, well documented in past seismic events. This multi-scale process optimises resource allocation to reduce the level of uncertainty for subsequent levels of analysis, providing useful information for land management and emergency planning.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 12-21
Author(s):  
Azad Kumar Mehta ◽  
Deepak Kumar ◽  
Pijush Samui

Liquefaction susceptibility of soil is a complex problem due to non-linear behaviour of soil and its physical attributes. The assessment of liquefaction potential is commonly assessed by the in-situ testing methods. The classification problem of liquefaction is non-linear in nature and difficult to model considering all independent variables (seismic and soil properties) using traditional techniques. In this study, four different classification techniques, namely Fast k-NN (F-kNN), Naïve Bayes Classifier (NBC), Decision Forest Classifier (DFC), and Group Method of Data Handling (GMDH), were used. The SPT-based case record was used to train and validate the models. The performance of these models was assessed using different indexes, namely sensitivity, specificity, type-I error, type-II error, and accuracy rate. Additionally, receiver operating characteristic (ROC) curve were plotted for comparative study. The results show that the F-kNN models perform far better than other models and can be used as a reliable technique for analysis of liquefaction susceptibility of soil.


Sign in / Sign up

Export Citation Format

Share Document