binding orientations
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zachary J Wehrspan ◽  
Robert T McDonnell ◽  
Adrian Elcock

DeepMind′s AlphaFold2 software has ushered in a revolution in high quality, 3D protein structure prediction. In very recent work by the DeepMind team, structure predictions have been made for entire proteomes of twenty-one organisms, with >360,000 structures made available for download. Here we show that thousands of novel binding sites for iron-sulfur (Fe-S) clusters and zinc ions can be identified within these predicted structures by exhaustive enumeration of all potential ligand-binding orientations. We demonstrate that AlphaFold2 routinely makes highly specific predictions of ligand binding sites: for example, binding sites that are comprised exclusively of four cysteine sidechains fall into three clusters, representing binding sites for 4Fe-4S clusters, 2Fe-2S clusters, or individual Zn ions. We show further: (a) that the majority of known Fe-S cluster and Zn-binding sites documented in UniProt are recovered by the AlphaFold2 structures, (b) that there are occasional disputes between AlphaFold2 and UniProt with AlphaFold2 predicting highly plausible alternative binding sites, (c) that the Fe-S cluster binding sites that we identify in E. coli agree well with previous bioinformatics predictions, (d) that cysteines predicted here to be part of Fe-S cluster or Zn-binding sites show little overlap with those shown via chemoproteomics techniques to be highly reactive, and (e) that AlphaFold2 occasionally appears to build erroneous disulfide bonds between cysteines that should instead coordinate a ligand. These results suggest that AlphaFold2 could be an important tool for the functional annotation of proteomes, and the methodology presented here is likely to be useful for predicting other ligand-binding sites.


2021 ◽  
Vol 118 (41) ◽  
pp. e2016962118
Author(s):  
Eugenia M. Clerico ◽  
Alexandra K. Pozhidaeva ◽  
Rachel M. Jansen ◽  
Can Özden ◽  
Joseph M. Tilitsky ◽  
...  

Heat shock protein 70 (Hsp70) chaperones bind many different sequences and discriminate between incompletely folded and folded clients. Most research into the origins of this “selective promiscuity” has relied on short peptides as substrates to dissect the binding, but much less is known about how Hsp70s bind full-length client proteins. Here, we connect detailed structural analyses of complexes between the Escherichia coli Hsp70 (DnaK) substrate-binding domain (SBD) and peptides encompassing five potential binding sites in the precursor to E. coli alkaline phosphatase (proPhoA) with SBD binding to full-length unfolded proPhoA. Analysis of SBD complexes with proPhoA peptides by a combination of X-ray crystallography, methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), and paramagnetic relaxation enhancement (PRE) NMR and chemical cross-linking experiments provided detailed descriptions of their binding modes. Importantly, many sequences populate multiple SBD binding modes, including both the canonical N to C orientation and a C to N orientation. The favored peptide binding mode optimizes substrate residue side-chain compatibility with the SBD binding pockets independent of backbone orientation. Relating these results to the binding of the SBD to full-length proPhoA, we observe that multiple chaperones may bind to the protein substrate, and the binding sites, well separated in the proPhoA sequence, behave independently. The hierarchy of chaperone binding to sites on the protein was generally consistent with the apparent binding affinities observed for the peptides corresponding to these sites. Functionally, these results reveal that Hsp70s “read” sequences without regard to the backbone direction and that both binding orientations must be considered in current predictive algorithms.


2021 ◽  
Vol 478 (18) ◽  
pp. 3423-3428
Author(s):  
Helen S. Toogood ◽  
Nigel S. Scrutton

Nitroreductases catalyse the NAD(P)H-dependent nitro reduction in nitrofuran antibiotics, which activates them into cytotoxic molecules leading to cell death. The design of new effective nitrofuran antibiotics relies on knowledge of the kinetic mechanism and nitrofuran binding mode of microbial nitroreductases NfsA and NfsB. This has been hampered by multiple co-crystallisation studies revealing ligand binding in non-electron transfer competent states. In a recent study by Day et al. (2021) the authors investigated the likely reaction mechanism and mode of nitrofurantoin binding to NfsA using potentiometry, global kinetics analysis, crystallography and molecular dynamics simulations. Their findings suggest nitrofurantoin reduction proceeds via a direct hydride transfer from reduced FMN, while the crystallographic binding orientation is an inhibitory complex. Molecular dynamics simulations suggest ligand binding orientations is dependent on the oxidation state of the FMN. This study highlights the importance of utilising computational studies alongside traditional crystallographic approaches, when multiple stable ligand binding orientations can occur.


2021 ◽  
Vol 22 (18) ◽  
pp. 10047
Author(s):  
Carina Höring ◽  
Marcus Conrad ◽  
Christian A. Söldner ◽  
Jinan Wang ◽  
Heinrich Sticht ◽  
...  

G protein-coupled receptors (GPCRs) are targets of extracellular stimuli and hence occupy a key position in drug discovery. By specific and not yet fully elucidated coupling profiles with α subunits of distinct G protein families, they regulate cellular responses. The histamine H2 and H4 receptors (H2R and H4R) are prominent members of Gs- and Gi-coupled GPCRs. Nevertheless, promiscuous G protein and selective Gi signaling have been reported for the H2R and H4R, respectively, the molecular mechanism of which remained unclear. Using a combination of cellular experimental assays and Gaussian accelerated molecular dynamics (GaMD) simulations, we investigated the coupling profiles of the H2R and H4R to engineered mini-G proteins (mG). We obtained coupling profiles of the mGs, mGsi, or mGsq proteins to the H2R and H4R from the mini-G protein recruitment assays using HEK293T cells. Compared to H2R–mGs expressing cells, histamine responses were weaker (pEC50, Emax) for H2R–mGsi and –mGsq. By contrast, the H4R selectively bound to mGsi. Similarly, in all-atom GaMD simulations, we observed a preferential binding of H2R to mGs and H4R to mGsi revealed by the structural flexibility and free energy landscapes of the complexes. Although the mG α5 helices were consistently located within the HR binding cavity, alternative binding orientations were detected in the complexes. Due to the specific residue interactions, all mG α5 helices of the H2R complexes adopted the Gs-like orientation toward the receptor transmembrane (TM) 6 domain, whereas in H4R complexes, only mGsi was in the Gi-like orientation toward TM2, which was in agreement with Gs- and Gi-coupled GPCRs structures resolved by X-ray/cryo-EM. These cellular and molecular insights support (patho)physiological profiles of the histamine receptors, especially the hitherto little studied H2R function in the brain, as well as of the pharmacological potential of H4R selective drugs.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Himasha M Perera ◽  
Michael A Trakselis

DNA replication requires that the duplex genomic DNA strands be separated; a function that is implemented by ring-shaped hexameric helicases in all Domains. Helicases are composed of two domains, an N- terminal DNA binding domain (NTD) and a C- terminal motor domain (CTD). Replication is controlled by loading of helicases at origins of replication, activation to preferentially encircle one strand, and then translocation to begin separation of the two strands. Using a combination of site-specific DNA footprinting, single-turnover unwinding assays, and unique fluorescence translocation monitoring, we have been able to quantify the binding distribution and the translocation orientation of Saccharolobus (formally Sulfolobus) solfataricus MCM on DNA. Our results show that both the DNA substrate and the C-terminal winged-helix (WH) domain influence the orientation but that translocation on DNA proceeds N-first.


2019 ◽  
Vol 31 (10) ◽  
pp. 2287-2290
Author(s):  
S. Pitchuanchom ◽  
M. Nontakitticharoen ◽  
H. Thaisuchat

The aim of this study is to report the development of Escherichia coli O157:H7 template for structure-based drug design. This template was validated by redocking with crystal ligand I. The results showed a good matching of docked and the crystallographic binding orientations with root mean square deviation (RMSD) less than 2.0 Å. Moreover, the developed template was applied to predict binding mode of 19 known E. coli inhibitors and 40 natural products. The results showed that the binding energy of almost E. coli inhibitors was related to their biological activity. The use of developed E. coli O157:H7 template in automated docking could speed up the process of novel drug discovery by allowing designed inhibitors to be tested computationally before the compounds are synthesized.


2018 ◽  
Author(s):  
Timothy Travers ◽  
William Kanagy ◽  
Elton Jhamba ◽  
Byron Goldstein ◽  
Diane S. Lidke ◽  
...  

ABSTRACTSyk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as the tetrameric (αβγ2) FcεRI The simplest model assumes that Syk activation occurs through cis binding of its tandem SH2 domains to dual phosphotyrosines within immunoreceptor tyrosine-based activation motifs of individual γ chains. In this model, Syk activity is modulated by phosphorylation occurring between adjacent Syk molecules docked on γ homodimers and by Lyn molecules bound to FcεRIβ. However, the mechanistic details of Syk docking on γ homodimers are not fully resolved, particularly the possibility of trans binding orientations and the impact of Y130 autophosphorylation within Syk interdomain A. Analytical modeling shows that multivalent interactions lead to increased WT Syk cis-oriented binding by three orders of magnitude. Molecular dynamics (MD) simulations show increased inter-SH2 flexibility in a Y130E phosphomimetic form of Syk, associated with reduced overall helicity of interdomain A. Hybrid MD/worm-like chain polymer models show that the Y130E substitution reduces cis binding of Syk. We report computational models and estimates of relative binding for all possible cis and trans 2:2 Syk:FcεRIγ complexes. Calcium imaging experiments confirm model predictions that cis binding of WT Syk is strongly preferred for efficient signaling, while trans conformations trigger weak but measurable responses.


2017 ◽  
Vol 1512 ◽  
pp. 34-42 ◽  
Author(s):  
Hong-Fei Tong ◽  
Carlo Cavallotti ◽  
Shan-Jing Yao ◽  
Dong-Qiang Lin

Sign in / Sign up

Export Citation Format

Share Document