wave curvature
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Robert A McDougal ◽  
Cameron Conte ◽  
Lia Eggleston ◽  
Adam John Hunter Newton ◽  
Hana Galijasevic

Neuronal activity is the result of both the electrophysiology and chemophysiology. A neuron can be well represented for the purposes of electrophysiological simulation as a tree composed of connected cylinders. This representation is also apt for 1D simulations of their chemophysiology, provided the spatial scale is larger than the diameter of the cylinders and there is radial symmetry. Higher dimensional simulation is necessary to accurately capture the dynamics when these criteria are not met, such as with wave curvature, spines, or diffusion near the soma. We have developed a solution to enable efficient finite volume method simulation of reaction-diffusion kinetics in intracellular 3D regions in neuron and network models and provide an implementation within the NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm transforms morphologies suitable for ion-channel based simulations into consistent 3D voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to NEURON's 1D mechanisms for ion channels, synapses, etc. The 3D domain may cover the entire cell or selected regions of interest. Simulations with dendritic spines and of the soma reveal details of dynamics that would be missed in a pure 1D simulation. We describe and validate the methods and discuss their performance.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012014
Author(s):  
O V Babourova ◽  
B N Frolov ◽  
M S Khetzeva ◽  
D V Kushnir

Abstract Plane gravitational waves in the Riemann space of General Relativity is considered. The criterion of plane gravitational waves is used based on the analogy between plane gravitational and electromagnetic waves. The Theorem is proved that the action of the Lie derivative on the plane wave curvature 2-form in the direction of the vector generating the invariance group of this wave in the Riemann space is equal to zero. It is justified that the gravitational waves can be used to transmit information in the Riemann space.


2020 ◽  
Vol 2020.69 (0) ◽  
pp. 601
Author(s):  
Tomoyuki MASANI ◽  
Atsushi MATSUDA ◽  
Saburo CHUBU

Author(s):  
Atsushi MATSUDA ◽  
Keita SUZUKI ◽  
Naoki AOYAMA ◽  
Takuhiro KITO ◽  
Hideto OWAKI

2008 ◽  
Vol 123 (5) ◽  
pp. 3588-3588 ◽  
Author(s):  
Timothy Duda ◽  
James F. Lynch ◽  
Ying‐Tsong Lin ◽  
Arthur Newhall ◽  
Hans Graber ◽  
...  

2008 ◽  
Author(s):  
G. T. Sutherland ◽  
E. R. Lemar ◽  
M. H. Marcus ◽  
Mark Elert ◽  
Michael D. Furnish ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document