polynomial flows
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2019 ◽  
Vol 31 (4) ◽  
pp. 943-949
Author(s):  
Rafael B. Andrist

Abstract There exist three vector fields with complete polynomial flows on {\mathbb{C}^{n}} , {n\geq 2} , which generate the Lie algebra generated by all algebraic vector fields on {\mathbb{C}^{n}} with complete polynomial flows. In particular, the flows of these vector fields generate a group that acts infinitely transitively. The analogous result holds in the holomorphic setting.


2017 ◽  
Vol 833 ◽  
pp. 131-163 ◽  
Author(s):  
D. J. Ivers

The incompressible flow of a uniform fluid, which fills a rigid spheroid rotating about an arbitrary axis fixed in an inertial frame, is dominated at small Rossby and Ekman numbers by the rotation through the Coriolis force. The effects of rotation on the flow can be found by treating the Coriolis force modified by a pressure gradient as a skew-symmetric bounded linear operator $\boldsymbol{{\mathcal{C}}}$ acting on smooth inviscid incompressible flows in the spheroid. It is shown that the space of incompressible polynomial flows of degree $N$ or less in the spheroid is invariant under $\boldsymbol{{\mathcal{C}}}$ for any $N$. The skew symmetry of $\boldsymbol{{\mathcal{C}}}$ implies the Coriolis operator $\boldsymbol{{\mathcal{C}}}$ is non-defective for such flows with an orthogonal set of eigenmodes (inertial and geostrophic modes) which form a basis for the finite-dimensional space of spheroidal polynomial flows. The eigenmodes are tilted if the rotation axis is not aligned with the symmetry axis of the spheroid. The non-defective property of $\boldsymbol{{\mathcal{C}}}$ enables enumeration of the modes and proof of their completeness using the Weierstrass polynomial approximation theorem. The fundamental tool, which is required to establish invariance of spheroidal polynomial flows under $\boldsymbol{{\mathcal{C}}}$ and completeness of the Coriolis modes, is that the solution of the polynomial Poisson–Neumann problem, i.e. Poisson’s equation with Neumann boundary condition and polynomial data, in a spheroid is a polynomial. The Coriolis modes of degree one and all geostrophic modes are explicitly constructed. Only the modes of degree one have non-zero angular momentum in the boundary frame.


Author(s):  
Faiza Akram ◽  
Dongsheng Liu

The goal of this paper is to generalize the main results of [1] and subsequent papers on metric Diophantine approximation with dependent quantities to the set-up of systems of linear forms. In particular, we establish “joint strong extremality” of arbitrary finite collection of smooth nondegenerate submani- folds of .The proof was based on quantitative nondivergence estimates for quasi-polynomial flows on the space of lattices.


2015 ◽  
Vol 766 ◽  
pp. 468-498 ◽  
Author(s):  
D. J. Ivers ◽  
A. Jackson ◽  
D. Winch

AbstractWe consider incompressible flows in the rapid-rotation limit of small Rossby number and vanishing Ekman number, in a bounded volume with a rigid impenetrable rotating boundary. Physically the flows are inviscid, almost rigid rotations. We interpret the Coriolis force, modified by a pressure gradient, as a linear operator acting on smooth inviscid incompressible flows in the volume. The eigenfunctions of the Coriolis operator $\boldsymbol{{\mathcal{C}}}$ so defined are the inertial modes (including any Rossby modes) and geostrophic modes of the rotating volume. We show $\boldsymbol{{\mathcal{C}}}$ is a bounded operator and that $-\text{i}\boldsymbol{{\mathcal{C}}}$ is symmetric, so that the Coriolis modes of different frequencies are orthogonal. We prove that the space of incompressible polynomial flows of degree $N$ or less in a sphere is invariant under $\boldsymbol{{\mathcal{C}}}$. The symmetry of $-\text{i}\boldsymbol{{\mathcal{C}}}$ thus implies the Coriolis operator is non-defective on the finite-dimensional space of spherical polynomial flows. This enables us to enumerate the Coriolis modes, and to establish their completeness using the Weierstrass polynomial approximation theorem. The fundamental tool, which is required to establish invariance of spherical polynomial flows under $\boldsymbol{{\mathcal{C}}}$ and completeness, is that the solution of the polynomial Poisson–Neumann problem, i.e. Poisson’s equation with a Neumann boundary condition and polynomial data, in a sphere is a polynomial. We also enumerate the Coriolis modes in a sphere, with careful consideration of the geostrophic modes, directly from the known analytic solutions.


2012 ◽  
Vol 33 (6) ◽  
pp. 1667-1708 ◽  
Author(s):  
TIM AUSTIN

AbstractLet $G$ be a connected nilpotent Lie group. Given probability-preserving$G$-actions $(X_i,\Sigma _i,\mu _i,u_i)$, $i=0,1,\ldots ,k$, and also polynomial maps $\phi _i:\mathbb {R}\to G$, $i=1,\ldots ,k$, we consider the trajectory of a joining $\lambda $ of the systems $(X_i,\Sigma _i,\mu _i,u_i)$ under the ‘off-diagonal’ flow \[ (t,(x_0,x_1,x_2,\ldots ,x_k))\mapsto (x_0,u_1^{\phi _1(t)}x_1,u_2^{\phi _2(t)}x_2,\ldots ,u_k^{\phi _k(t)}x_k). \] It is proved that any joining $\lambda $ is equidistributed under this flow with respect to some limit joining $\lambda '$. This is deduced from the stronger fact of norm convergence for a system of multiple ergodic averages, related to those arising in Furstenberg’s approach to the study of multiple recurrence. It is also shown that the limit joining $\lambda '$ is invariant under the subgroup of $G^{k+1}$generated by the image of the off-diagonal flow, in addition to the diagonal subgroup.


Sign in / Sign up

Export Citation Format

Share Document