stone cell
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 25)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoqian Wang ◽  
Siqi Liu ◽  
Huili Sun ◽  
Chunyan Liu ◽  
Xinyue Li ◽  
...  

AbstractThe production of reactive oxygen species (ROS) by NADPH oxidase, which is also referred to as respiratory burst oxidase homolog (RBOH), affects several processes in plants. However, the role of RBOHs in cell wall lignification is not well understood. In this study, we show that PuRBOHF, an RBOH isoform, plays an important role in secondary wall formation in pear stone cells. ROS were closely associated with lignin deposition and stone cell formation according to microscopy data. In addition, according to the results of an in situ hybridization analysis, the stage-specific expression of PuRBOHF was higher in stone cells than in cells of other flesh tissues. Inhibitors of RBOH activity suppressed ROS accumulation and stone cell lignification in pear fruit. Moreover, transient overexpression of PuRBOHF caused significant changes in the amount of ROS and lignin that accumulated in pear fruit and flesh calli. We further showed that PuMYB169 regulates PuRBOHF expression, while PuRBOHF-derived ROS induces the transcription of PuPOD2 and PuLAC2. The findings of this study indicate that PuRBOHF-mediated ROS production, which is regulated by a lignin-related transcriptional network, is essential for monolignol polymerization and stone cell formation in pear fruit.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xingyu Tao ◽  
Min Liu ◽  
Yazhou Yuan ◽  
Ruonan Liu ◽  
Kaijie Qi ◽  
...  

Abstract Background The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. Results There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. Conclusions Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Runze Wang ◽  
Yongsong Xue ◽  
Jing Fan ◽  
Jia-Long Yao ◽  
Mengfan Qin ◽  
...  

Abstract Background Stone cells in fruits of pear (Pyrus pyrifolia) negatively influence fruit quality because their lignified cell walls impart a coarse and granular texture to the fruit flesh. Results We generate RNA-seq data from the developing fruits of 206 pear cultivars with a wide range of stone cell contents and use a systems genetics approach to integrate co-expression networks and expression quantitative trait loci (eQTLs) to characterize the regulatory mechanisms controlling lignocellulose formation in the stone cells of pear fruits. Our data with a total of 35,897 expressed genes and 974,404 SNPs support the identification of seven stone cell formation modules and the detection of 139,515 eQTLs for 3229 genes in these modules. Focusing on regulatory factors and using a co-expression network comprising 39 structural genes, we identify PbrNSC as a candidate regulator of stone cell formation. We then verify the function of PbrNSC in regulating lignocellulose formation using both pear fruit and Arabidopsis plants and further show that PbrNSC can transcriptionally activate multiple target genes involved in secondary cell wall formation. Conclusions This study generates a large resource for studying stone cell formation and provides insights into gene regulatory networks controlling the formation of stone cell and lignocellulose.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1444
Author(s):  
Kaijie Qi ◽  
Xiaofei Song ◽  
Yazhou Yuan ◽  
Jianping Bao ◽  
Xin Gong ◽  
...  

The synthetic enzyme cinnamyl alcohol dehydrogenase (CAD) is involved in responses to various stresses during plant growth. It regulates the monolignol biosynthesis and catalyzes hydroxyl cinnamaldehyde reduction to the corresponding alcohols. Although the CAD gene families have been explored in some species, little known is in Rosaceae. In this study, we identified 149 genes in Pyrus bretschneideri (PbrCAD), Malus domestica (MDPCAD), Prunus mume (PmCAD) and Fragaria vesca (mrnaCAD). They were phylogenetically clustered into six subgroups. All CAD genes contained ADH-N and ADH-zinc-N domains and were distributed on chromosomes unevenly. Dispersed and WGD/segmental duplications accounted the highest number of evolutionary events. Eight collinear gene pairs were identified among the four Rosaceae species, and the highest number was recorded in pear as five pairs. The five PbrCAD gene pairs had undergone purifying selection under Ka/Ks analysis. Furthermore, nine genes were identified based on transcriptomic and stone cell content in pear fruit. In qRT-PCR, the expression patterns of PbrCAD1, PbrCAD20, PbrCAD27, and PbrCAD31 were consistent with variation in stone cell content during pear fruit development. These results will provide valuable information for understanding the relationship between gene expressions and stone cell number in fruit.


2021 ◽  
Author(s):  
Chi Yuan ◽  
Haidong Bu ◽  
Jiaming Zhao ◽  
Jiaojiao Liu ◽  
Hui Yuan ◽  
...  

Abstract Background:Selenium (Se) is an essential trace element for both animals and plants. Se treatment can increase fruit Se concentration and shelf life. However, the mechanism underlying Se-delayed fruit ripening is still unclear.Results:In this research, two groups of Se (A and B treatments) were used to treat ‘Nanhong’ pear fruit. The results showed that these treatments could greatly increase the Se content but decreased the titratable acid content. Treatment A significantly decreased ethylene production, and the key genes controlling ethylene production, PuACSs and PuERF2, were inhibited by Se treatment. In addition, treatment A significantly decreased the stone cell content, and one lignin biosynthesis gene, PuC4H, was downregulated by treatment A.Concusions:Se treatment increased the Se content in pear fruit. In addition, Se decreased ethylene production and the stone cell content. Moreover, the key genes for ethylene production (PuACSs and PuERF2) and lignin biosynthesis (PuC4H) were also inhibited by Se treatment.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christine C. Gaylarde ◽  
Jose Antonio Baptista-Neto

AbstractDimension stone is natural rock prepared for building use. It is rapidly colonised by microorganisms that cause discoloration (mainly cyanobacteria, algae and fungi) and structural damage. Microbial mobilisation of ions leads to new superficial or internal deposits, weakening the structure. Cyanobacteria and fungi may penetrate, filling pores or creating new spaces. Lichens, fungus/phototroph associations, colonise surfaces and damage stone through ingrowing rhizines and acid production. Initial degradation produces conditions suitable for germination of seeds of higher plants and further destruction. Emerging techniques to elucidate stone-cell interactions and control of initial biofilm formation that eventuates in stone disintegration are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhao ◽  
Xueqiang Su ◽  
Xinya Wang ◽  
Mengna Wang ◽  
Xujing Chi ◽  
...  

TCP is a plant-specific transcription factor that plays an important role in flowering, leaf development and other physiological processes. In this study, we identified a total of 155 TCP genes: 34 in Pyrus bretschneideri, 19 in Fragaria vesca, 52 in Malus domestica, 19 in Prunus mume, 17 in Rubus occidentalis and 14 in Prunus avium. The evolutionary relationship of the TCP gene family was examined by constructing a phylogenetic tree, tracking gene duplication events, performing a sliding window analysis. The expression profile analysis and qRT-PCR results of different tissues showed that PbTCP10 were highly expressed in the flowers. These results indicated that PbTCP10 might participated in flowering induction in pear. Expression pattern analysis of different developmental stages showed that PbTCP14 and PbTCP15 were similar to the accumulation pattern of fruit lignin and the stone cell content. These two genes might participate in the thickening of the secondary wall during the formation of stone cells in pear. Subcellular localization showed that PbTCPs worked in the nucleus. This study explored the evolution of TCP genes in six Rosaceae species, and the expression pattern of TCP genes in different tissues of “Dangshan Su” pear. Candidate genes related to flower induction and stone cell formation were identified. In summary, our research provided an important theoretical basis for improving pear fruit quality and increasing fruit yield by molecular breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiahui Xu ◽  
Xingyu Tao ◽  
Zhihua Xie ◽  
Xin Gong ◽  
Kaijie Qi ◽  
...  

AbstractPear [Pyrus bretschneideri cv. Dangshan Su] fruit quality is not always satisfactory owing to the presence of stone cells, and lignin is the main component of stone cells in pear fruits. Caffeoyl shikimate esterase (CSE) is a key enzyme in the lignin biosynthesis. Although CSE-like genes have been isolated from a variety of plant species, their orthologs are not characterized in pear. In this study, the CSE gene family (PbCSE) from P. bretschneideri was identified. According to the physiological data and quantitative RT-PCR (qRT-PCR), PbCSE1 was associated with lignin deposition and stone cell formation. The overexpression of PbCSE1 increased the lignin content in pear fruits. Relative to wild-type (WT) Arabidopsis, the overexpression of PbCSE1 delayed growth, increased the lignin deposition and lignin content in stems. Simultaneously, the expression of lignin biosynthetic genes were also increased in pear fruits and Arabidopsis. These results demonstrated that PbCSE1 plays an important role in cell lignification and will provide a potential molecular strategy to improve the quality of pear fruits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aisajan Mamat ◽  
Kuerban Tusong ◽  
Juan Xu ◽  
Peng Yan ◽  
Chuang Mei ◽  
...  

AbstractKorla pear (Pyrus sinkiangensis Yü) is a landrace selected from a hybrid pear species in the Xinjiang Autonomous Region in China. In recent years, pericarp roughening has been one of the major factors that adversely affects fruit quality. Compared with regular fruits, rough-skin fruits have a greater stone cell content. Stone cells compose sclerenchyma tissue that is formed by secondary thickening of parenchyma cell walls. In this work, we determined the main components of stone cells by isolating them from the pulp of rough-skin fruits at the ripening stage. Stone cell staining and apoptosis detection were then performed on fruit samples that were collected at three different developmental stages (20, 50 and 80 days after flowering (DAF)) representing the prime, late and stationary stages of stone cell differentiation, respectively. The same batches of samples were used for parallel transcriptomic and proteomic analysis to identify candidate genes and proteins that are related to SCW biogenesis in Korla pear fruits. The results showed that stone cells are mainly composed of cellulose (52%), hemicellulose (23%), lignin (20%) and a small amount of polysaccharides (3%). The periods of stone cell differentiation and cell apoptosis were synchronous and primarily occurred from 0 to 50 DAF. The stone cell components increased abundantly at 20 DAF but then decreased gradually. A total of 24,268 differentially expressed genes (DEGs) and 1011 differentially accumulated proteins (DAPs) were identified from the transcriptomic and proteomic data, respectively. We screened the DEGs and DAPs that were enriched in SCW-related pathways, including those associated with lignin biosynthesis (94 DEGs and 31 DAPs), cellulose and xylan biosynthesis (46 DEGs and 18 DAPs), S-adenosylmethionine (SAM) metabolic processes (10 DEGs and 3 DAPs), apoplastic ROS production (16 DEGs and 2 DAPs), and cell death (14 DEGs and 6 DAPs). Among the identified DEGs and DAPs, 63 significantly changed at both the transcript and protein levels during the experimental periods. In addition, the majority of these identified genes and proteins were expressed the most at the prime stage of stone cell differentiation, but their levels gradually decreased at the later stages.


Sign in / Sign up

Export Citation Format

Share Document