intermediate solid solution
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 59 (6) ◽  
pp. 1485-1510
Author(s):  
Fabian Fröhlich ◽  
Janne Siikaluoma ◽  
Inga Osbahr ◽  
Jens Gutzmer

ABSTRACT The Sakatti Ni-Cu-platinum-group element deposit is situated in northern Finland and comprises massive, disseminated, and vein sulfide mineralization. A stockwork is formed by chalcopyrite-rich sulfide veins, which contain exceptionally high platinum-group elements and Au grades. The mineralogy and geochemistry of this stockwork zone ore is documented in this investigation. The results are used to develop the first robust genetic concept and its relationship to massive and disseminated mineralization of the Sakatti deposit. This model is similar to that proposed for many Cu-rich magmatic sulfide ores, most importantly the Cu-rich footwall veins described from the Sudbury Complex in Canada and the Cu-rich ore at Noril'sk-Talnakh in Russia. Detailed petrographic studies using a sample suite from exploration drill core intersecting vein-style mineralization revealed a classic magmatic sulfide assemblage of chalcopyrite ± pyrrhotite, pentlandite, and pyrite. More than 1000 platinum-group mineral grains belonging almost exclusively to the moncheite (PtTe2) – merenskyite (PdTe2) – melonite (NiTe2) solid solution series were identified in the studied samples. Notably, almost two thirds of the platinum-group element-bearing minerals consist of melonite. Some of the platinum-group minerals contain inclusions of Ag-rich gold (AgAu2) and muthmannite (AuAgTe2). Most of the platinum-group minerals occur as inclusions in chalcopyrite, although a few grains are located at base-metal sulfide grain boundaries and in fractures in base-metal sulfides. The whole-rock compositions of the stockwork veins are Cu-rich and are interpreted to represent a fractionated Cu-rich sulfide liquid enriched in Pt, Pd, Au, Ag, As, Bi, Pb, Se, Te, Zn, which separated from a monosulfide solid solution (mss). An intermediate solid solution (iss) solidified from the Cu-rich sulfide liquid, recrystallizing chalcopyrite at <550 °C. Simultaneously, small volumes of intercumulus residual melt contained mainly the precious metals, Bi, and Te due to their incompatibility in iss. Solitary and composite platinum-group minerals as well as Au-minerals crystallized first from the residual melt (<600 °C), followed by a succession of various Bi-, Ag-, and Pb-tellurides (∼540 °C), and finally sphalerite and galena. Melonite crystallized as mostly large, solitary grains exsolved directly from Ni-bearing intermediate solid solution (∼600 °C), shortly after the formation of moncheite and merenskyite from the residual melt. Finally, remobilization of the platinum-group minerals occurred at temperatures of <300 °C, as suggested by the presence of minor amounts of Cl-bearing minerals and ragged grain shapes.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 942
Author(s):  
Maria Shapovalova ◽  
Nadezhda Tolstykh ◽  
Roman Shelepaev ◽  
Valery Kalugin

The mafic-ultramafic massifs with the PGE-Cu-Ni mineralization located in North-Central Mongolia: Oortsog, Dulaan, Mankhan, Yamat, and Nomgon were investigated. For the first time we consider these massifs as a single magmatic association and as fragments of Khangai batholith caused by the action of the plume responsible for the formation Permian Khangai LIP. The massifs fractionated from peridotite to gabbro have a similar typomorphic ore mineralogical and geochemical features, which change depending on the degrees of fractionation of magma and evolution of the sulfide melt. The least fractionated Oortsog massif originated from Ni-rich high-Mg basaltic magma. It is characterized by predominance of pyrrhotite mineralization due to exsolution of monosulfide solid solution (MSS). The most fractionated is the Nomgon massif originated from Cu-rich basaltic magma with bornite-chalcopyrite mineralization, formed as an exsolution of intermediate solid solution (ISS). The rest of the massifs have a medium characteristics between these two. The compositions of sulfides in the studied massifs change in accordance with the increase in sulfur fugacity from peridotite to gabbro: enrichment of pentlandite in Ni and pyrrhotite in S. The composition of PGM changes from Pt minerals in Oortsog massif to Pd minerals in Nomgon massif in the same direction. These massifs can be considered as potential for the PGE.


2020 ◽  
Vol 105 (3) ◽  
pp. 344-352 ◽  
Author(s):  
Hassan M. Helmy ◽  
Roman Botcharnikov

Abstract The stability relations of Pt and Pd antimonides and bismuthinides in the Sb- and Bi-bearing Fe-Ni-Cu sulfide systems have been experimentally determined at temperatures between 1100 and 700 °C in evacuated silica tubes. Both PtSb and PdSb are stable as immiscible liquids at temperatures above 1100 and 1000 °C, respectively. The Fe-Ni-Cu-sulfide melt that coexists with the immiscible antimonide melt can dissolve up to 3.8 wt% Sb at 1100 °C, whereas monosulfide solid solution (mss) dissolves very low amounts of Sb over the entire 1100–700 °C temperature range. The liquidus of Pt-antimonides and Pdantimonides are above 980 and 750 °C, respectively. Bismuth does not form immiscible melt at 1100 °C but may partially partition into a vapor phase at 1050 °C. The Pt- and Pd-bismuthinides crystallize directly from immiscible bismuthinide melt only after crystallization of the sulfide melt into intermediate solid solution (iss). Insizwaite (PtBi2) and froodite (PdBi2) are stable at 780 and 700 °C, respectively. At the last stage of evolution of Sb-bearing magmatic Fe-Ni-Cu sulfide melts, Sb will form immiscible antimonide melt that will extract Pt and Pd from the sulfide melt. During cooling, Pt and Pd-antimonides will crystallize directly from the immiscible antimonide melt, and Pt-phases will form at higher temperatures relative to Pd-phases. Bismuth will partition into vapor phase and concentrate into a low-temperature melt in hydrothermal and porphyry systems that scavenge precious metals. The Sb and Bi (like Te) will be highly incompatible at moderate degrees of mantle partial melting.


2019 ◽  
Vol 489 (1) ◽  
pp. 70-74
Author(s):  
E. F. Sinyakova ◽  
V. I. Kosyakov ◽  
N. A. Goryachev

The phase and chemical composition of drop-shaped inclusions in directionally crystallized intermediate solid solution was studied. The initial melt contained (in mol.%): Fe 31,79; Cu 15,94; Ni 1,70; S 50,20; Sn 0,05; As 0,04; Pt, Pd, Rh, Ru, Ag, Au, Se, Te, Bi, Sb 0,03. Experimental data indicate the simultaneous crystallization of two types of liquids upon cooling of the initial sulfide melt. One of them is formed in the subsystem (Pd, Au, Ag)-(Bi, Sb, Te), and the second - in the subsystem Cu-(S, Bi, Sb, Te). When these liquids solidified, inclusions formed, which we divided into four classes. Class I has a eutectic-like structure with a matrix of Pd(Bi,Sb)xTe1-x solid solution and Au crystallites with Ag, Cu, and Pd impurities. Class II is formed from sulfosalts with inclusions of Bi and Au. Class III includes inclusions of sperrylite Pt(As,S)2. Class IV forms compound inclusions from fragments of classes I-III. The experiment described in the work showed a more complex behavior of noble metals and metalloid impurities during the crystallization of complex sulfide-metalloid melts compared with the previously described data of isothermal experiments.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 531 ◽  
Author(s):  
Elena Sinyakova ◽  
Victor Kosyakov ◽  
Galina Palyanova ◽  
Nikolay Karmanov

We carried out a directed crystallization of a melt of the following composition (in mol. %): Fe 31.79, Cu 15.94, Ni 1.70, S 50.20, Sn 0.05, As 0.04, Pt, Pd, Rh, Ru, Ag, Au, Se, Te, Bi, and Sb by 0.03. The obtained cylindrical sample consisted of monosulfide solid solution (mss), nonstoichometric isocubanite (icb*), and three modifications of intermediate solid solution (iss1, iss2, iss3) crystallized from the melt. The simultaneous formation of two types of liquids separated during cooling of the parent sulfide melt was revealed. In the first, concentrations of noble metals associated with Bi, Sb, and Te were found. The second is related to Cu and was found to contain a large amount of S in addition to Bi and Sb. We established the main types of inclusions formed during fractional crystallization of Pt-bearing sulfide melt. It was shown that noble metals are concentrated in inclusions in the form of RuS2, PdTe2, (Pt,Pd)Te2, PtRhAsS, and Ag2Se, doped with Ag, Cu, and Pd, in mss and in the form of PtAs2; Au-doped with Ag, Cu, and Pd; Ag2Te; and Pd(Bi,Sb)xTe1−x in icb* and iss. As solid solutions in the base metal sulfides, Rh is present in mss, Sn in iss.


2019 ◽  
Vol 61 (2) ◽  
pp. 39-71
Author(s):  
A. S. Tseluyko ◽  
V. V. Maslennikov ◽  
N. R. Ayupova ◽  
S. P. Maslennikova ◽  
L. V. Danyushevsky

At the well preserved Yubileynoe VMS deposit (South Urals), sulfide breccias and turbidites contain abundant tellurides represented by hessite, coloradoite, altaite, volynskite, stutzite, petzite, calaverite as well as phases of intermediate solid solution tellurobismuthite – rucklidgeite. There is three generation of tellurides were highlighted: 1) primary hydrothermal tellurides in the fragments of chalcopyrite and sphalerite of chalcopyrite-rich black smoker chimneys; 2) authigenic tellurides in pseudomorphic chalcopyrite and veins of chalcopyrite after fragments of colloform and granular pyrite; 3) authigenic tellurides in pyrite nodules. Authigenic tellurides are widespread in pyrite-chalcopyrite turbidites. In sulfide turbidites and gravelites with fragments of sphalerite-pyrite, pyrite-sphalerite paleosmoker chimneys and clasts of colloform and fine-grained seafloor hydrothermal crusts, primary hydrothermal and authigenic tellurides are less common. Siliceous siltstones intercalated with sulfide turbidites contain pyrite nodules, which peripheral parts contain inclusions of epigenetic tellurides. It is assumed that the source of tellurium for authigenic tellurides were fragments of colloform pyrite and hydrothermal chalcopyrite of pyrite-chalcopyrite chimneys, which dissolved during post-sedimentation processes. The main concentrators of tellurium in clastic ores are pseudomorphic chalcopyrite, which inherits high contents of Te, Bi, Au, Ag, Co, Ni, As from the substituted colloform pyrite, and varieties of granular pyrite, containing microinclusions of tellurobismuthite (Bi, Te), petzite (Au, Ag, Te), altaite (Pb, Te), coloradoite and hessite (Ag, Te).


Sign in / Sign up

Export Citation Format

Share Document