keystone transform
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 13 (17) ◽  
pp. 3367
Author(s):  
Jibin Zheng ◽  
Kangle Zhu ◽  
Zhiyong Niu ◽  
Hongwei Liu ◽  
Qing Huo Liu

The multivariate range function of the high-speed maneuvering target induces modulations on both the envelop and phase, i.e., the range cell migration (RCM) and Doppler frequency migration (DFM) which degrade the long-time coherent integration used for detection and localization. To solve this problem, many long-time coherent integration methods have been proposed. Based on mechanisms of typical methods, this paper names two signal processing modes, i.e., processing unification (PU) mode and processing separation (PS) mode, and presents their general forms. Thereafter, based on the principle of the PS mode, a novel long-time coherent integration method, known as the generalized dechirp-keystone transform (GDKT), is proposed for radar high-speed maneuvering target detection and localization. The computational cost, energy integration, peak-to-sidelobe level (PSL), resolution, and anti-noise performance of the GDKT are analyzed and compared with those of the maximum likelihood estimation (MLE) method and keystone transform-dechirp (KTD) method. With mathematical analyses and numerical simulations, we validate two main superiorities of the GDKT, including (1) the statistically optimal anti-noise performance, and (2) the low computational cost. The real radar data is also used to validate the GDKT. It is worthwhile noting that, based on closed analytical formulae of the MLE method, KTD method, and GDKT, several doubts in radar high-speed maneuvering target detection and localization are mathematically interpreted, such as the blind speed sidelobe (BSSL) and the relationship between the PU and PS modes.


2021 ◽  
Vol 13 (2) ◽  
pp. 177
Author(s):  
Jun Wan ◽  
Xiaoheng Tan ◽  
Zhanye Chen ◽  
Dong Li ◽  
Qinghua Liu ◽  
...  

Ground moving targets will typically be defocused because of the range migration (RM) and Doppler frequency migration (DFM) caused by the unknown relative motions between the platform of synthetic aperture radar (SAR) and the ground moving targets. The received signal of the ground moving target easily exhibits the Doppler ambiguity, and the Doppler ambiguity leads to the refocusing difficulty of ground moving targets. To address these problems, a SAR refocusing method of ground moving targets with Doppler ambiguity based on modified second-order keystone transform (MSOKT) and keystone transform (KT) is presented in this paper. Firstly, the second-order phase is separated by the time reversing process. Secondly, MSOKT is performed to compensate the range curvature migration and DFM, and then the coefficient of the second-order phase is estimated. Finally, a well-refocused result of the moving target is achieved after KT and the estimated Doppler ambiguity number are used to eliminate residual range walk migration. The proposed method can accurately remove RM and DFM and effectively focus the moving targets without residual correction errors. Moreover, the effects of Doppler ambiguity (including Doppler center blur and spectrum split) and blind speed sidelobe are further avoided. On the basis of the analysis of cross-term for the multiple target case, the identification strategy of spurious peak of cross-term is proposed. Additionally, the developed method can be sped up by nonuniform fast Fourier transform without the interpolation operation. The effectiveness of the proposed method is verified by both airborne and spaceborne real data processing results.


Sign in / Sign up

Export Citation Format

Share Document